Cargando…
Brain–gut axis after stroke
Stroke leads to inflammatory and immune response in the brain and immune organs. The gut or gastrointestinal tract is a major immune organ equipped with the largest pool of immune cells representing more than 70% of the entire immune system and the largest population of macrophages in the human body...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329216/ https://www.ncbi.nlm.nih.gov/pubmed/30693343 http://dx.doi.org/10.4103/bc.bc_32_18 |
_version_ | 1783386794819059712 |
---|---|
author | Arya, Awadhesh K. Hu, Bingren |
author_facet | Arya, Awadhesh K. Hu, Bingren |
author_sort | Arya, Awadhesh K. |
collection | PubMed |
description | Stroke leads to inflammatory and immune response in the brain and immune organs. The gut or gastrointestinal tract is a major immune organ equipped with the largest pool of immune cells representing more than 70% of the entire immune system and the largest population of macrophages in the human body. The bidirectional communication between the brain and the gut is commonly known as brain–gut or gut–brain axis. Stroke often leads to gut dysmotility, gut microbiota dysbiosis, “leaky” gut, gut hemorrhage, and even gut-origin sepsis, which is often associated with poor prognosis. Emerging evidence suggests that gut inflammatory and immune response plays a key role in the pathophysiology of stroke and may become a key therapeutic target for its treatment. Ischemic brain tissue produces damage-associated molecular patterns to initiate innate and adaptive immune response both locally and systemically through the specialized pattern-recognition receptors (e.g., toll-like receptors). After stroke, innate immune cells including neutrophils, microglia or macrophages, mast cells, innate lymphocytes (IL-17 secreting γδ T-cell), and natural killer T-cell respond within hours, followed by the adaptive immune response through activation of T and B lymphocytes. Subpopulations of T-cells can help or worsen ischemic brain injury. Pro-inflammatory Th1, Th17, and γδ T-cells are often associated with increased inflammatory damage, whereas regulatory T-cells are known to suppress postischemic inflammation by increasing the secretion of anti-inflammatory cytokine IL-10. Although known to play a key role, research in the gut inflammatory and immune response after stroke is still in its initial stage. A better understanding of the gut inflammatory and immune response after stroke may be important for the development of effective stroke therapies. The present review will discuss recent advances in the studies of the brain–gut axis after stroke, the key issues to be solved, and the future directions. |
format | Online Article Text |
id | pubmed-6329216 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-63292162019-01-28 Brain–gut axis after stroke Arya, Awadhesh K. Hu, Bingren Brain Circ Review Article Stroke leads to inflammatory and immune response in the brain and immune organs. The gut or gastrointestinal tract is a major immune organ equipped with the largest pool of immune cells representing more than 70% of the entire immune system and the largest population of macrophages in the human body. The bidirectional communication between the brain and the gut is commonly known as brain–gut or gut–brain axis. Stroke often leads to gut dysmotility, gut microbiota dysbiosis, “leaky” gut, gut hemorrhage, and even gut-origin sepsis, which is often associated with poor prognosis. Emerging evidence suggests that gut inflammatory and immune response plays a key role in the pathophysiology of stroke and may become a key therapeutic target for its treatment. Ischemic brain tissue produces damage-associated molecular patterns to initiate innate and adaptive immune response both locally and systemically through the specialized pattern-recognition receptors (e.g., toll-like receptors). After stroke, innate immune cells including neutrophils, microglia or macrophages, mast cells, innate lymphocytes (IL-17 secreting γδ T-cell), and natural killer T-cell respond within hours, followed by the adaptive immune response through activation of T and B lymphocytes. Subpopulations of T-cells can help or worsen ischemic brain injury. Pro-inflammatory Th1, Th17, and γδ T-cells are often associated with increased inflammatory damage, whereas regulatory T-cells are known to suppress postischemic inflammation by increasing the secretion of anti-inflammatory cytokine IL-10. Although known to play a key role, research in the gut inflammatory and immune response after stroke is still in its initial stage. A better understanding of the gut inflammatory and immune response after stroke may be important for the development of effective stroke therapies. The present review will discuss recent advances in the studies of the brain–gut axis after stroke, the key issues to be solved, and the future directions. Medknow Publications & Media Pvt Ltd 2018 2018-12-31 /pmc/articles/PMC6329216/ /pubmed/30693343 http://dx.doi.org/10.4103/bc.bc_32_18 Text en Copyright: © 2018 Brain Circulation http://creativecommons.org/licenses/by-nc-sa/4.0 This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Review Article Arya, Awadhesh K. Hu, Bingren Brain–gut axis after stroke |
title | Brain–gut axis after stroke |
title_full | Brain–gut axis after stroke |
title_fullStr | Brain–gut axis after stroke |
title_full_unstemmed | Brain–gut axis after stroke |
title_short | Brain–gut axis after stroke |
title_sort | brain–gut axis after stroke |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329216/ https://www.ncbi.nlm.nih.gov/pubmed/30693343 http://dx.doi.org/10.4103/bc.bc_32_18 |
work_keys_str_mv | AT aryaawadheshk braingutaxisafterstroke AT hubingren braingutaxisafterstroke |