Cargando…
Embedding of Genes Using Cancer Gene Expression Data: Biological Relevance and Potential Application on Biomarker Discovery
Artificial neural networks (ANNs) have been utilized for classification and prediction task with remarkable accuracy. However, its implications for unsupervised data mining using molecular data is under-explored. We found that embedding can extract biologically relevant information from The Cancer G...
Autores principales: | Choy, Chi Tung, Wong, Chi Hang, Chan, Stephen Lam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329279/ https://www.ncbi.nlm.nih.gov/pubmed/30662451 http://dx.doi.org/10.3389/fgene.2018.00682 |
Ejemplares similares
-
Graph Embedding Based Novel Gene Discovery Associated With Diabetes Mellitus
por: Du, Jianzong, et al.
Publicado: (2021) -
Contextualizing Genes by Using Text-Mined Co-Occurrence Features for Cancer Gene Panel Discovery
por: Chen, Hui-O, et al.
Publicado: (2021) -
Bivariate Causal Discovery and Its Applications to Gene Expression and Imaging Data Analysis
por: Jiao, Rong, et al.
Publicado: (2018) -
Discovery and Validation of Key Biomarkers Based on Immune Infiltrates in Alzheimer’s Disease
por: Liu, Zhuohang, et al.
Publicado: (2021) -
To Embed or Not: Network Embedding as a Paradigm in Computational Biology
por: Nelson, Walter, et al.
Publicado: (2019)