Cargando…

Comparative transcriptome analysis reveals relationship of three major domesticated varieties of Auricularia auricula-judae

Auricularia auricula-judae is an edible mushroom and a traditional medicine in China as well as the fourth largest cultivated mushroom species in the world. Here for the first time, we present comparative transcriptome analyses of the fruiting bodies of three morphologically distinguishable A. auric...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yuhui, Wang, Liang, Zhang, Dongshan, Li, Rong, Cheng, Tianyou, Zhang, Yibi, Liu, Xueju, Wong, Gary, Tang, Yuguo, Wang, Hui, Gao, Shan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329756/
https://www.ncbi.nlm.nih.gov/pubmed/30635591
http://dx.doi.org/10.1038/s41598-018-36984-y
Descripción
Sumario:Auricularia auricula-judae is an edible mushroom and a traditional medicine in China as well as the fourth largest cultivated mushroom species in the world. Here for the first time, we present comparative transcriptome analyses of the fruiting bodies of three morphologically distinguishable A. auricula-judae cultivated varieties (Wujin, smooth; Banjin, partially wrinkled; and Quanjin, fully wrinkled) collected from Jilin Province, China. Biological triplicates were performed to determine the expression levels of 13,937 unigenes. Among them, only 13 unigenes were annotated to A. auricula-judae, highlighting the lack of publicly available reference sequences for this economically important species. Principal component analysis (PCA) determined that the gene expression profile of Quanjin was unique when compared to those of Banjin and Wujin. Such relationships were further supported by analyses of annotated and unannotated unigenes, differentially expressed unigenes, gene ontology functions, and the family of peroxidase genes. Using the KEGG database, significant alternations in biological pathways were detected among the three cultivars. This work contributes a large set of A. auricula-judae sequences to public database, establishes the relationships among major cultivars, and provides molecular guidance for breeding and cultivation.