Cargando…
Predicting responses to platin chemotherapy agents with biochemically-inspired machine learning
The selection of effective genes that accurately predict chemotherapy responses might improve cancer outcomes. We compare optimized gene signatures for cisplatin, carboplatin, and oxaliplatin responses in the same cell lines and validate each signature using data from patients with cancer. Supervise...
Autores principales: | Mucaki, Eliseos J., Zhao, Jonathan Z. L., Lizotte, Daniel J., Rogan, Peter K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6329797/ https://www.ncbi.nlm.nih.gov/pubmed/30652029 http://dx.doi.org/10.1038/s41392-018-0034-5 |
Ejemplares similares
-
Predicting ionizing radiation exposure using biochemically-inspired genomic machine learning
por: Zhao, Jonathan Z.L., et al.
Publicado: (2018) -
Predicting Outcomes of Hormone and Chemotherapy in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) Study by Biochemically-inspired Machine Learning
por: Mucaki, Eliseos J., et al.
Publicado: (2017) -
Expression Changes Confirm Genomic Variants Predicted to Result in Allele-Specific, Alternative mRNA Splicing
por: Mucaki, Eliseos J., et al.
Publicado: (2020) -
Pathway‐extended gene expression signatures integrate novel biomarkers that improve predictions of patient responses to kinase inhibitors
por: Bagchee‐Clark, Ashis J., et al.
Publicado: (2020) -
Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis
por: Caminsky, Natasha, et al.
Publicado: (2014)