Cargando…
In vitro synergy of sertraline and tetracycline cannot be reproduced in pigs orally challenged with a tetracycline resistant Escherichia coli
BACKGROUND: Antimicrobial helper-compounds may reverse antimicrobial resistance. Sertraline, a antidepressant drug, has been suggested as a tetracycline helper-compound. Tetracycline is the preferred antimicrobial for treatment of enteric diseases in pigs. This study is the first to evaluate the pot...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6330422/ https://www.ncbi.nlm.nih.gov/pubmed/30634900 http://dx.doi.org/10.1186/s12866-018-1383-5 |
_version_ | 1783386969980534784 |
---|---|
author | Kromann, Sofie Hvidtfeldt, Anna Boye, Mette Sørensen, Dorte Bratbo Jørgensen, Steffen Nielsen, Jens Peter Olsen, Rikke Heidemann |
author_facet | Kromann, Sofie Hvidtfeldt, Anna Boye, Mette Sørensen, Dorte Bratbo Jørgensen, Steffen Nielsen, Jens Peter Olsen, Rikke Heidemann |
author_sort | Kromann, Sofie |
collection | PubMed |
description | BACKGROUND: Antimicrobial helper-compounds may reverse antimicrobial resistance. Sertraline, a antidepressant drug, has been suggested as a tetracycline helper-compound. Tetracycline is the preferred antimicrobial for treatment of enteric diseases in pigs. This study is the first to evaluate the potency of sertraline as a tetracycline adjuvant in pigs. METHODS: Forty-eight nursery pigs were divided into four treatment groups: Tetracycline, sertraline, tetracycline/sertraline or un-medicated control. Fecal and ileal samples were obtained before treatment, 48 h and nine days after five days of treatment, respectively. Colony forming units (CFU) of tetracycline resistant coliforms in each sample (ileal or fecal) and CFU of an orally inoculated tetracycline-resistant strain of Escherichia coli were determined at each sampling point. The microbiome of fecal and ileal and samples was analyzed by sequencing of the 16S V3-V4 region. RESULTS: The results did not provide evidence that sertraline in combination with tetracycline has any impact on tetracycline resistant bacteria in either fecal or ileum samples, while in the tetracycline treated group of pigs, an increase in the prevalence of a tetracycline resistant indicator strain of Escherichia coli shortly after ended five-day treatment was observed. The ileal samples obtained shortly after ended treatment showed treatment-associated changes in the composition of the microbiota in the groups of pigs treated with tetracycline (+/−) sertraline. While tetracycline treatment increased the abundance in the reads of E. coli, sertraline/tetracycline treatment led to increased abundances of Streptococcus spp. and decreased abundances of Lactobacillus spp. However, all observed differences (on CFU counts and microbiota composition) between groups shortly after treatment had diminished in less than two weeks after last treatment day. CONCLUSIONS: Sertraline (+/−) tetracycline treatment did not reduce the long-term level of tetracycline-resistant bacteria in the feces or small intestine contents of piglets compared to the un-medicated control group of pigs. The result of this study reflects the importance of in vivo studies for confirmation of the antimicrobial helper-compound potential of an in vitro active compound. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12866-018-1383-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6330422 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-63304222019-01-16 In vitro synergy of sertraline and tetracycline cannot be reproduced in pigs orally challenged with a tetracycline resistant Escherichia coli Kromann, Sofie Hvidtfeldt, Anna Boye, Mette Sørensen, Dorte Bratbo Jørgensen, Steffen Nielsen, Jens Peter Olsen, Rikke Heidemann BMC Microbiol Research Article BACKGROUND: Antimicrobial helper-compounds may reverse antimicrobial resistance. Sertraline, a antidepressant drug, has been suggested as a tetracycline helper-compound. Tetracycline is the preferred antimicrobial for treatment of enteric diseases in pigs. This study is the first to evaluate the potency of sertraline as a tetracycline adjuvant in pigs. METHODS: Forty-eight nursery pigs were divided into four treatment groups: Tetracycline, sertraline, tetracycline/sertraline or un-medicated control. Fecal and ileal samples were obtained before treatment, 48 h and nine days after five days of treatment, respectively. Colony forming units (CFU) of tetracycline resistant coliforms in each sample (ileal or fecal) and CFU of an orally inoculated tetracycline-resistant strain of Escherichia coli were determined at each sampling point. The microbiome of fecal and ileal and samples was analyzed by sequencing of the 16S V3-V4 region. RESULTS: The results did not provide evidence that sertraline in combination with tetracycline has any impact on tetracycline resistant bacteria in either fecal or ileum samples, while in the tetracycline treated group of pigs, an increase in the prevalence of a tetracycline resistant indicator strain of Escherichia coli shortly after ended five-day treatment was observed. The ileal samples obtained shortly after ended treatment showed treatment-associated changes in the composition of the microbiota in the groups of pigs treated with tetracycline (+/−) sertraline. While tetracycline treatment increased the abundance in the reads of E. coli, sertraline/tetracycline treatment led to increased abundances of Streptococcus spp. and decreased abundances of Lactobacillus spp. However, all observed differences (on CFU counts and microbiota composition) between groups shortly after treatment had diminished in less than two weeks after last treatment day. CONCLUSIONS: Sertraline (+/−) tetracycline treatment did not reduce the long-term level of tetracycline-resistant bacteria in the feces or small intestine contents of piglets compared to the un-medicated control group of pigs. The result of this study reflects the importance of in vivo studies for confirmation of the antimicrobial helper-compound potential of an in vitro active compound. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12866-018-1383-5) contains supplementary material, which is available to authorized users. BioMed Central 2019-01-11 /pmc/articles/PMC6330422/ /pubmed/30634900 http://dx.doi.org/10.1186/s12866-018-1383-5 Text en © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Kromann, Sofie Hvidtfeldt, Anna Boye, Mette Sørensen, Dorte Bratbo Jørgensen, Steffen Nielsen, Jens Peter Olsen, Rikke Heidemann In vitro synergy of sertraline and tetracycline cannot be reproduced in pigs orally challenged with a tetracycline resistant Escherichia coli |
title | In vitro synergy of sertraline and tetracycline cannot be reproduced in pigs orally challenged with a tetracycline resistant Escherichia coli |
title_full | In vitro synergy of sertraline and tetracycline cannot be reproduced in pigs orally challenged with a tetracycline resistant Escherichia coli |
title_fullStr | In vitro synergy of sertraline and tetracycline cannot be reproduced in pigs orally challenged with a tetracycline resistant Escherichia coli |
title_full_unstemmed | In vitro synergy of sertraline and tetracycline cannot be reproduced in pigs orally challenged with a tetracycline resistant Escherichia coli |
title_short | In vitro synergy of sertraline and tetracycline cannot be reproduced in pigs orally challenged with a tetracycline resistant Escherichia coli |
title_sort | in vitro synergy of sertraline and tetracycline cannot be reproduced in pigs orally challenged with a tetracycline resistant escherichia coli |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6330422/ https://www.ncbi.nlm.nih.gov/pubmed/30634900 http://dx.doi.org/10.1186/s12866-018-1383-5 |
work_keys_str_mv | AT kromannsofie invitrosynergyofsertralineandtetracyclinecannotbereproducedinpigsorallychallengedwithatetracyclineresistantescherichiacoli AT hvidtfeldtanna invitrosynergyofsertralineandtetracyclinecannotbereproducedinpigsorallychallengedwithatetracyclineresistantescherichiacoli AT boyemette invitrosynergyofsertralineandtetracyclinecannotbereproducedinpigsorallychallengedwithatetracyclineresistantescherichiacoli AT sørensendortebratbo invitrosynergyofsertralineandtetracyclinecannotbereproducedinpigsorallychallengedwithatetracyclineresistantescherichiacoli AT jørgensensteffen invitrosynergyofsertralineandtetracyclinecannotbereproducedinpigsorallychallengedwithatetracyclineresistantescherichiacoli AT nielsenjenspeter invitrosynergyofsertralineandtetracyclinecannotbereproducedinpigsorallychallengedwithatetracyclineresistantescherichiacoli AT olsenrikkeheidemann invitrosynergyofsertralineandtetracyclinecannotbereproducedinpigsorallychallengedwithatetracyclineresistantescherichiacoli |