Cargando…
An actin‐depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (SaADF2), is superior to its rice homolog (OsADF2) in conferring drought and salt tolerance when constitutively overexpressed in rice
Actin‐depolymerizing factors (ADFs) maintain the cellular actin network dynamics by regulating severing and disassembly of actin filaments in response to environmental cues. An ADF isolated from a monocot halophyte, Spartina alterniflora (SaADF2), imparted significantly higher level of drought and s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6330539/ https://www.ncbi.nlm.nih.gov/pubmed/29851294 http://dx.doi.org/10.1111/pbi.12957 |
_version_ | 1783386997552840704 |
---|---|
author | Sengupta, Sonali Mangu, Venkata Sanchez, Luis Bedre, Renesh Joshi, Rohit Rajasekaran, Kanniah Baisakh, Niranjan |
author_facet | Sengupta, Sonali Mangu, Venkata Sanchez, Luis Bedre, Renesh Joshi, Rohit Rajasekaran, Kanniah Baisakh, Niranjan |
author_sort | Sengupta, Sonali |
collection | PubMed |
description | Actin‐depolymerizing factors (ADFs) maintain the cellular actin network dynamics by regulating severing and disassembly of actin filaments in response to environmental cues. An ADF isolated from a monocot halophyte, Spartina alterniflora (SaADF2), imparted significantly higher level of drought and salinity tolerance when expressed in rice than its rice homologue OsADF2. SaADF2 differs from OsADF2 by a few amino acid residues, including a substitution in the regulatory phosphorylation site serine‐6, which accounted for its weak interaction with OsCDPK6 (calcium‐dependent protein kinase), thus resulting in an increased efficacy of SaADF2 and enhanced cellular actin dynamics. SaADF2 overexpression preserved the actin filament organization better in rice protoplasts under desiccation stress. The predicted tertiary structure of SaADF2 showed a longer F‐loop than OsADF2 that could have contributed to higher actin‐binding affinity and rapid F‐actin depolymerization in vitro by SaADF2. Rice transgenics constitutively overexpressing SaADF2 (SaADF2‐OE) showed better growth, relative water content, and photosynthetic and agronomic yield under drought conditions than wild‐type (WT) and OsADF2 overexpressers (OsADF2‐OE). SaADF2‐OE preserved intact grana structure after prolonged drought stress, whereas WT and OsADF2‐OE presented highly damaged and disorganized grana stacking. The possible role of ADF2 in transactivation was hypothesized from the comparative transcriptome analyses, which showed significant differential expression of stress‐related genes including interacting partners of ADF2 in overexpressers. Identification of a complex, differential interactome decorating or regulating stress‐modulated cytoskeleton driven by ADF isoforms will lead us to key pathways that could be potential target for genome engineering to improve abiotic stress tolerance in agricultural crops. |
format | Online Article Text |
id | pubmed-6330539 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63305392019-01-17 An actin‐depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (SaADF2), is superior to its rice homolog (OsADF2) in conferring drought and salt tolerance when constitutively overexpressed in rice Sengupta, Sonali Mangu, Venkata Sanchez, Luis Bedre, Renesh Joshi, Rohit Rajasekaran, Kanniah Baisakh, Niranjan Plant Biotechnol J Research Articles Actin‐depolymerizing factors (ADFs) maintain the cellular actin network dynamics by regulating severing and disassembly of actin filaments in response to environmental cues. An ADF isolated from a monocot halophyte, Spartina alterniflora (SaADF2), imparted significantly higher level of drought and salinity tolerance when expressed in rice than its rice homologue OsADF2. SaADF2 differs from OsADF2 by a few amino acid residues, including a substitution in the regulatory phosphorylation site serine‐6, which accounted for its weak interaction with OsCDPK6 (calcium‐dependent protein kinase), thus resulting in an increased efficacy of SaADF2 and enhanced cellular actin dynamics. SaADF2 overexpression preserved the actin filament organization better in rice protoplasts under desiccation stress. The predicted tertiary structure of SaADF2 showed a longer F‐loop than OsADF2 that could have contributed to higher actin‐binding affinity and rapid F‐actin depolymerization in vitro by SaADF2. Rice transgenics constitutively overexpressing SaADF2 (SaADF2‐OE) showed better growth, relative water content, and photosynthetic and agronomic yield under drought conditions than wild‐type (WT) and OsADF2 overexpressers (OsADF2‐OE). SaADF2‐OE preserved intact grana structure after prolonged drought stress, whereas WT and OsADF2‐OE presented highly damaged and disorganized grana stacking. The possible role of ADF2 in transactivation was hypothesized from the comparative transcriptome analyses, which showed significant differential expression of stress‐related genes including interacting partners of ADF2 in overexpressers. Identification of a complex, differential interactome decorating or regulating stress‐modulated cytoskeleton driven by ADF isoforms will lead us to key pathways that could be potential target for genome engineering to improve abiotic stress tolerance in agricultural crops. John Wiley and Sons Inc. 2018-06-28 2019-01 /pmc/articles/PMC6330539/ /pubmed/29851294 http://dx.doi.org/10.1111/pbi.12957 Text en © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Sengupta, Sonali Mangu, Venkata Sanchez, Luis Bedre, Renesh Joshi, Rohit Rajasekaran, Kanniah Baisakh, Niranjan An actin‐depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (SaADF2), is superior to its rice homolog (OsADF2) in conferring drought and salt tolerance when constitutively overexpressed in rice |
title | An actin‐depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (SaADF2), is superior to its rice homolog (OsADF2) in conferring drought and salt tolerance when constitutively overexpressed in rice |
title_full | An actin‐depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (SaADF2), is superior to its rice homolog (OsADF2) in conferring drought and salt tolerance when constitutively overexpressed in rice |
title_fullStr | An actin‐depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (SaADF2), is superior to its rice homolog (OsADF2) in conferring drought and salt tolerance when constitutively overexpressed in rice |
title_full_unstemmed | An actin‐depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (SaADF2), is superior to its rice homolog (OsADF2) in conferring drought and salt tolerance when constitutively overexpressed in rice |
title_short | An actin‐depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (SaADF2), is superior to its rice homolog (OsADF2) in conferring drought and salt tolerance when constitutively overexpressed in rice |
title_sort | actin‐depolymerizing factor from the halophyte smooth cordgrass, spartina alterniflora (saadf2), is superior to its rice homolog (osadf2) in conferring drought and salt tolerance when constitutively overexpressed in rice |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6330539/ https://www.ncbi.nlm.nih.gov/pubmed/29851294 http://dx.doi.org/10.1111/pbi.12957 |
work_keys_str_mv | AT senguptasonali anactindepolymerizingfactorfromthehalophytesmoothcordgrassspartinaalterniflorasaadf2issuperiortoitsricehomologosadf2inconferringdroughtandsalttolerancewhenconstitutivelyoverexpressedinrice AT manguvenkata anactindepolymerizingfactorfromthehalophytesmoothcordgrassspartinaalterniflorasaadf2issuperiortoitsricehomologosadf2inconferringdroughtandsalttolerancewhenconstitutivelyoverexpressedinrice AT sanchezluis anactindepolymerizingfactorfromthehalophytesmoothcordgrassspartinaalterniflorasaadf2issuperiortoitsricehomologosadf2inconferringdroughtandsalttolerancewhenconstitutivelyoverexpressedinrice AT bedrerenesh anactindepolymerizingfactorfromthehalophytesmoothcordgrassspartinaalterniflorasaadf2issuperiortoitsricehomologosadf2inconferringdroughtandsalttolerancewhenconstitutivelyoverexpressedinrice AT joshirohit anactindepolymerizingfactorfromthehalophytesmoothcordgrassspartinaalterniflorasaadf2issuperiortoitsricehomologosadf2inconferringdroughtandsalttolerancewhenconstitutivelyoverexpressedinrice AT rajasekarankanniah anactindepolymerizingfactorfromthehalophytesmoothcordgrassspartinaalterniflorasaadf2issuperiortoitsricehomologosadf2inconferringdroughtandsalttolerancewhenconstitutivelyoverexpressedinrice AT baisakhniranjan anactindepolymerizingfactorfromthehalophytesmoothcordgrassspartinaalterniflorasaadf2issuperiortoitsricehomologosadf2inconferringdroughtandsalttolerancewhenconstitutivelyoverexpressedinrice AT senguptasonali actindepolymerizingfactorfromthehalophytesmoothcordgrassspartinaalterniflorasaadf2issuperiortoitsricehomologosadf2inconferringdroughtandsalttolerancewhenconstitutivelyoverexpressedinrice AT manguvenkata actindepolymerizingfactorfromthehalophytesmoothcordgrassspartinaalterniflorasaadf2issuperiortoitsricehomologosadf2inconferringdroughtandsalttolerancewhenconstitutivelyoverexpressedinrice AT sanchezluis actindepolymerizingfactorfromthehalophytesmoothcordgrassspartinaalterniflorasaadf2issuperiortoitsricehomologosadf2inconferringdroughtandsalttolerancewhenconstitutivelyoverexpressedinrice AT bedrerenesh actindepolymerizingfactorfromthehalophytesmoothcordgrassspartinaalterniflorasaadf2issuperiortoitsricehomologosadf2inconferringdroughtandsalttolerancewhenconstitutivelyoverexpressedinrice AT joshirohit actindepolymerizingfactorfromthehalophytesmoothcordgrassspartinaalterniflorasaadf2issuperiortoitsricehomologosadf2inconferringdroughtandsalttolerancewhenconstitutivelyoverexpressedinrice AT rajasekarankanniah actindepolymerizingfactorfromthehalophytesmoothcordgrassspartinaalterniflorasaadf2issuperiortoitsricehomologosadf2inconferringdroughtandsalttolerancewhenconstitutivelyoverexpressedinrice AT baisakhniranjan actindepolymerizingfactorfromthehalophytesmoothcordgrassspartinaalterniflorasaadf2issuperiortoitsricehomologosadf2inconferringdroughtandsalttolerancewhenconstitutivelyoverexpressedinrice |