Cargando…
Analysis of the Cluster Prominence Feature for Detecting Calcifications in Mammograms
In mammograms, a calcification is represented as small but brilliant white region of the digital image. Earlier detection of malignant calcifications in patients provides high expectation of surviving to this disease. Nevertheless, white regions are difficult to see by visual inspection because a ma...
Autores principales: | Cruz-Bernal, Alejandra, Flores-Barranco, Martha M., Almanza-Ojeda, Dora L., Ledesma, Sergio, Ibarra-Manzano, Mario A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6330822/ https://www.ncbi.nlm.nih.gov/pubmed/30687489 http://dx.doi.org/10.1155/2018/2849567 |
Ejemplares similares
-
Artificial Intelligence to Analyze the Cortical Thickness Through Age
por: Ledesma, Sergio, et al.
Publicado: (2021) -
Contrast and Homogeneity Feature Analysis for Classifying Tremor Levels in Parkinson’s Disease Patients
por: Vivar, Guillermina, et al.
Publicado: (2019) -
Detection and quantification of breast arterial calcifications on mammograms: a deep learning approach
por: Mobini, Nazanin, et al.
Publicado: (2023) -
Geometric Analysis of Signals for Inference of Multiple Faults in Induction Motors
por: Contreras-Hernandez, Jose L., et al.
Publicado: (2022) -
Fuzzy technique for microcalcifications clustering in digital mammograms
por: Vivona, Letizia, et al.
Publicado: (2014)