Cargando…
Differential expression of the glucose transporter gene glcH in response to glucose and light in marine picocyanobacteria
BACKGROUND: Our team discovered that Prochlorococcus can take up glucose, in a process that changes the transcriptional pattern of several genes involved in glucose metabolization. We have also shown that glcH encodes a very high affinity glucose transporter, and that glucose is taken up by natural...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6330958/ https://www.ncbi.nlm.nih.gov/pubmed/30648008 http://dx.doi.org/10.7717/peerj.6248 |
_version_ | 1783387063375101952 |
---|---|
author | Moreno-Cabezuelo, José Ángel López-Lozano, Antonio Díez, Jesús García-Fernández, José Manuel |
author_facet | Moreno-Cabezuelo, José Ángel López-Lozano, Antonio Díez, Jesús García-Fernández, José Manuel |
author_sort | Moreno-Cabezuelo, José Ángel |
collection | PubMed |
description | BACKGROUND: Our team discovered that Prochlorococcus can take up glucose, in a process that changes the transcriptional pattern of several genes involved in glucose metabolization. We have also shown that glcH encodes a very high affinity glucose transporter, and that glucose is taken up by natural Prochlorococcus populations. We demonstrated that the kinetic parameters of glucose uptake show significant diversity in different Prochlorococcus and Synechococcus strains. Here, we tested whether the transcriptional response of glcH to several glucose concentrations and light conditions was also different depending on the studied strain. METHODS: Cultures were grown in the light, supplemented with five different glucose concentrations or subjected to darkness, and cells harvested after 24 h of treatment. qRT-PCR was used to determine glcH expression in four Prochlorococcus and two Synechococcus strains. RESULTS: In all studied strains glcH was expressed in the absence of glucose, and it increased upon glucose addition to cultures. The changes differed depending on the strain, both in the magnitude and in the way cells responded to the tested glucose concentrations. Unlike the other strains, Synechococcus BL107 showed the maximum glucose uptake at 5 nM glucose. Darkness induced a strong decrease in glcH expression, especially remarkable in Prochlorococcus MIT9313. DISCUSSION: Our results suggest that marine picocyanobacteria are actively monitoring the availability of glucose, to upregulate glcH expression in order to exploit the presence of sugars in the environment. The diverse responses observed in different strains suggest that the transcriptional regulation of glucose uptake has been adjusted by evolutive selection. Darkness promotes a strong decrease in glcH expression in all studied strains, which fits with previous results on glucose uptake in Prochlorococcus. Overall, this work reinforces the importance of mixotrophy for marine picocyanobacteria. |
format | Online Article Text |
id | pubmed-6330958 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63309582019-01-15 Differential expression of the glucose transporter gene glcH in response to glucose and light in marine picocyanobacteria Moreno-Cabezuelo, José Ángel López-Lozano, Antonio Díez, Jesús García-Fernández, José Manuel PeerJ Ecology BACKGROUND: Our team discovered that Prochlorococcus can take up glucose, in a process that changes the transcriptional pattern of several genes involved in glucose metabolization. We have also shown that glcH encodes a very high affinity glucose transporter, and that glucose is taken up by natural Prochlorococcus populations. We demonstrated that the kinetic parameters of glucose uptake show significant diversity in different Prochlorococcus and Synechococcus strains. Here, we tested whether the transcriptional response of glcH to several glucose concentrations and light conditions was also different depending on the studied strain. METHODS: Cultures were grown in the light, supplemented with five different glucose concentrations or subjected to darkness, and cells harvested after 24 h of treatment. qRT-PCR was used to determine glcH expression in four Prochlorococcus and two Synechococcus strains. RESULTS: In all studied strains glcH was expressed in the absence of glucose, and it increased upon glucose addition to cultures. The changes differed depending on the strain, both in the magnitude and in the way cells responded to the tested glucose concentrations. Unlike the other strains, Synechococcus BL107 showed the maximum glucose uptake at 5 nM glucose. Darkness induced a strong decrease in glcH expression, especially remarkable in Prochlorococcus MIT9313. DISCUSSION: Our results suggest that marine picocyanobacteria are actively monitoring the availability of glucose, to upregulate glcH expression in order to exploit the presence of sugars in the environment. The diverse responses observed in different strains suggest that the transcriptional regulation of glucose uptake has been adjusted by evolutive selection. Darkness promotes a strong decrease in glcH expression in all studied strains, which fits with previous results on glucose uptake in Prochlorococcus. Overall, this work reinforces the importance of mixotrophy for marine picocyanobacteria. PeerJ Inc. 2019-01-11 /pmc/articles/PMC6330958/ /pubmed/30648008 http://dx.doi.org/10.7717/peerj.6248 Text en © 2019 Moreno-Cabezuelo et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Ecology Moreno-Cabezuelo, José Ángel López-Lozano, Antonio Díez, Jesús García-Fernández, José Manuel Differential expression of the glucose transporter gene glcH in response to glucose and light in marine picocyanobacteria |
title | Differential expression of the glucose transporter gene glcH in response to glucose and light in marine picocyanobacteria |
title_full | Differential expression of the glucose transporter gene glcH in response to glucose and light in marine picocyanobacteria |
title_fullStr | Differential expression of the glucose transporter gene glcH in response to glucose and light in marine picocyanobacteria |
title_full_unstemmed | Differential expression of the glucose transporter gene glcH in response to glucose and light in marine picocyanobacteria |
title_short | Differential expression of the glucose transporter gene glcH in response to glucose and light in marine picocyanobacteria |
title_sort | differential expression of the glucose transporter gene glch in response to glucose and light in marine picocyanobacteria |
topic | Ecology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6330958/ https://www.ncbi.nlm.nih.gov/pubmed/30648008 http://dx.doi.org/10.7717/peerj.6248 |
work_keys_str_mv | AT morenocabezuelojoseangel differentialexpressionoftheglucosetransportergeneglchinresponsetoglucoseandlightinmarinepicocyanobacteria AT lopezlozanoantonio differentialexpressionoftheglucosetransportergeneglchinresponsetoglucoseandlightinmarinepicocyanobacteria AT diezjesus differentialexpressionoftheglucosetransportergeneglchinresponsetoglucoseandlightinmarinepicocyanobacteria AT garciafernandezjosemanuel differentialexpressionoftheglucosetransportergeneglchinresponsetoglucoseandlightinmarinepicocyanobacteria |