Cargando…
Nanotubular TiO(2) regulates macrophage M2 polarization and increases macrophage secretion of VEGF to accelerate endothelialization via the ERK1/2 and PI3K/AKT pathways
BACKGROUND: Macrophages play important roles in the immune response to, and successful implantation of, biomaterials. Titanium nanotubes are considered promising heart valve stent materials owing to their effects on modulation of macrophage behavior. However, the effects of nanotube-regulated macrop...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6330985/ https://www.ncbi.nlm.nih.gov/pubmed/30666106 http://dx.doi.org/10.2147/IJN.S188439 |
_version_ | 1783387069644537856 |
---|---|
author | Xu, Wei-Chang Dong, Xiao Ding, Jing-Li Liu, Ji-Chun Xu, Jian-Jun Tang, Yan-Hua Yi, Ying-Ping Lu, Chao Yang, Wei Yang, Jue-Sheng Gong, Yi Zhou, Jian-Liang |
author_facet | Xu, Wei-Chang Dong, Xiao Ding, Jing-Li Liu, Ji-Chun Xu, Jian-Jun Tang, Yan-Hua Yi, Ying-Ping Lu, Chao Yang, Wei Yang, Jue-Sheng Gong, Yi Zhou, Jian-Liang |
author_sort | Xu, Wei-Chang |
collection | PubMed |
description | BACKGROUND: Macrophages play important roles in the immune response to, and successful implantation of, biomaterials. Titanium nanotubes are considered promising heart valve stent materials owing to their effects on modulation of macrophage behavior. However, the effects of nanotube-regulated macrophages on endothelial cells, which are essential for stent endothelialization, are unknown. Therefore, in this study we evaluated the inflammatory responses of endothelial cells to titanium nanotubes prepared at different voltages. METHODS AND RESULTS: In this study we used three different voltages (20, 40, and 60 V) to produce titania nanotubes with three different diameters by anodic oxidation. The state of macrophages on the samples was assessed, and the supernatants were collected as conditioned media (CM) to stimulate human umbilical vein endothelial cells (HUVECs), with pure titanium as a control group. The results indicated that titanium dioxide (TiO(2)) nanotubes induced macrophage polarization toward the anti-inflammatory M2 state and increased the expression of arginase-1, mannose receptor, and interleukin 10. Further mechanistic analysis revealed that M2 macrophage polarization controlled by the TiO(2) nanotube surface activated the phosphatidylinositol 3-kinase/AKT and extracellular signal-regulated kinase 1/2 pathways through release of vascular endothelial growth factor to influence endothelialization. CONCLUSION: Our findings expanded our understanding of the complex influence of nanotubes in implants and the macrophage inflammatory response. Furthermore, CM generated from culture on the TiO(2) nanotube surface may represent an integrated research model for studying the interactions of two different cell types and may be a promising approach for accelerating stent endothelialization through immunoregulation. |
format | Online Article Text |
id | pubmed-6330985 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-63309852019-01-21 Nanotubular TiO(2) regulates macrophage M2 polarization and increases macrophage secretion of VEGF to accelerate endothelialization via the ERK1/2 and PI3K/AKT pathways Xu, Wei-Chang Dong, Xiao Ding, Jing-Li Liu, Ji-Chun Xu, Jian-Jun Tang, Yan-Hua Yi, Ying-Ping Lu, Chao Yang, Wei Yang, Jue-Sheng Gong, Yi Zhou, Jian-Liang Int J Nanomedicine Original Research BACKGROUND: Macrophages play important roles in the immune response to, and successful implantation of, biomaterials. Titanium nanotubes are considered promising heart valve stent materials owing to their effects on modulation of macrophage behavior. However, the effects of nanotube-regulated macrophages on endothelial cells, which are essential for stent endothelialization, are unknown. Therefore, in this study we evaluated the inflammatory responses of endothelial cells to titanium nanotubes prepared at different voltages. METHODS AND RESULTS: In this study we used three different voltages (20, 40, and 60 V) to produce titania nanotubes with three different diameters by anodic oxidation. The state of macrophages on the samples was assessed, and the supernatants were collected as conditioned media (CM) to stimulate human umbilical vein endothelial cells (HUVECs), with pure titanium as a control group. The results indicated that titanium dioxide (TiO(2)) nanotubes induced macrophage polarization toward the anti-inflammatory M2 state and increased the expression of arginase-1, mannose receptor, and interleukin 10. Further mechanistic analysis revealed that M2 macrophage polarization controlled by the TiO(2) nanotube surface activated the phosphatidylinositol 3-kinase/AKT and extracellular signal-regulated kinase 1/2 pathways through release of vascular endothelial growth factor to influence endothelialization. CONCLUSION: Our findings expanded our understanding of the complex influence of nanotubes in implants and the macrophage inflammatory response. Furthermore, CM generated from culture on the TiO(2) nanotube surface may represent an integrated research model for studying the interactions of two different cell types and may be a promising approach for accelerating stent endothelialization through immunoregulation. Dove Medical Press 2019-01-10 /pmc/articles/PMC6330985/ /pubmed/30666106 http://dx.doi.org/10.2147/IJN.S188439 Text en © 2019 Xu et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Xu, Wei-Chang Dong, Xiao Ding, Jing-Li Liu, Ji-Chun Xu, Jian-Jun Tang, Yan-Hua Yi, Ying-Ping Lu, Chao Yang, Wei Yang, Jue-Sheng Gong, Yi Zhou, Jian-Liang Nanotubular TiO(2) regulates macrophage M2 polarization and increases macrophage secretion of VEGF to accelerate endothelialization via the ERK1/2 and PI3K/AKT pathways |
title | Nanotubular TiO(2) regulates macrophage M2 polarization and increases macrophage secretion of VEGF to accelerate endothelialization via the ERK1/2 and PI3K/AKT pathways |
title_full | Nanotubular TiO(2) regulates macrophage M2 polarization and increases macrophage secretion of VEGF to accelerate endothelialization via the ERK1/2 and PI3K/AKT pathways |
title_fullStr | Nanotubular TiO(2) regulates macrophage M2 polarization and increases macrophage secretion of VEGF to accelerate endothelialization via the ERK1/2 and PI3K/AKT pathways |
title_full_unstemmed | Nanotubular TiO(2) regulates macrophage M2 polarization and increases macrophage secretion of VEGF to accelerate endothelialization via the ERK1/2 and PI3K/AKT pathways |
title_short | Nanotubular TiO(2) regulates macrophage M2 polarization and increases macrophage secretion of VEGF to accelerate endothelialization via the ERK1/2 and PI3K/AKT pathways |
title_sort | nanotubular tio(2) regulates macrophage m2 polarization and increases macrophage secretion of vegf to accelerate endothelialization via the erk1/2 and pi3k/akt pathways |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6330985/ https://www.ncbi.nlm.nih.gov/pubmed/30666106 http://dx.doi.org/10.2147/IJN.S188439 |
work_keys_str_mv | AT xuweichang nanotubulartio2regulatesmacrophagem2polarizationandincreasesmacrophagesecretionofvegftoaccelerateendothelializationviatheerk12andpi3kaktpathways AT dongxiao nanotubulartio2regulatesmacrophagem2polarizationandincreasesmacrophagesecretionofvegftoaccelerateendothelializationviatheerk12andpi3kaktpathways AT dingjingli nanotubulartio2regulatesmacrophagem2polarizationandincreasesmacrophagesecretionofvegftoaccelerateendothelializationviatheerk12andpi3kaktpathways AT liujichun nanotubulartio2regulatesmacrophagem2polarizationandincreasesmacrophagesecretionofvegftoaccelerateendothelializationviatheerk12andpi3kaktpathways AT xujianjun nanotubulartio2regulatesmacrophagem2polarizationandincreasesmacrophagesecretionofvegftoaccelerateendothelializationviatheerk12andpi3kaktpathways AT tangyanhua nanotubulartio2regulatesmacrophagem2polarizationandincreasesmacrophagesecretionofvegftoaccelerateendothelializationviatheerk12andpi3kaktpathways AT yiyingping nanotubulartio2regulatesmacrophagem2polarizationandincreasesmacrophagesecretionofvegftoaccelerateendothelializationviatheerk12andpi3kaktpathways AT luchao nanotubulartio2regulatesmacrophagem2polarizationandincreasesmacrophagesecretionofvegftoaccelerateendothelializationviatheerk12andpi3kaktpathways AT yangwei nanotubulartio2regulatesmacrophagem2polarizationandincreasesmacrophagesecretionofvegftoaccelerateendothelializationviatheerk12andpi3kaktpathways AT yangjuesheng nanotubulartio2regulatesmacrophagem2polarizationandincreasesmacrophagesecretionofvegftoaccelerateendothelializationviatheerk12andpi3kaktpathways AT gongyi nanotubulartio2regulatesmacrophagem2polarizationandincreasesmacrophagesecretionofvegftoaccelerateendothelializationviatheerk12andpi3kaktpathways AT zhoujianliang nanotubulartio2regulatesmacrophagem2polarizationandincreasesmacrophagesecretionofvegftoaccelerateendothelializationviatheerk12andpi3kaktpathways |