Cargando…
Enhancing Confusion Entropy (CEN) for binary and multiclass classification
Different performance measures are used to assess the behaviour, and to carry out the comparison, of classifiers in Machine Learning. Many measures have been defined on the literature, and among them, a measure inspired by Shannon’s entropy named the Confusion Entropy (CEN). In this work we introduc...
Autores principales: | Delgado, Rosario, Núñez-González, J. David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331113/ https://www.ncbi.nlm.nih.gov/pubmed/30640948 http://dx.doi.org/10.1371/journal.pone.0210264 |
Ejemplares similares
-
Correction: Enhancing Confusion Entropy (CEN) for binary and multiclass classification
por: Delgado, Rosario, et al.
Publicado: (2021) -
Multiclass Classification by Adaptive Network of Dendritic Neurons with Binary Synapses Using Structural Plasticity
por: Hussain, Shaista, et al.
Publicado: (2016) -
Multiclass Cancer Classification by Using Fuzzy Support Vector Machine and Binary Decision Tree With Gene Selection
por: Mao, Yong, et al.
Publicado: (2005) -
On Improved 3D-CNN-Based Binary and Multiclass Classification of Alzheimer's Disease Using Neuroimaging Modalities and Data Augmentation Methods
por: Tufail, Ahsan Bin, et al.
Publicado: (2022) -
Multiclass EEG signal classification utilizing Rényi min-entropy-based feature selection from wavelet packet transformation
por: Rahman, Md. Asadur, et al.
Publicado: (2020)