Cargando…
Ceruloplasmin Plays a Neuroprotective Role in Cerebral Ischemia
Ceruloplasmin (Cp) is a ferroxidase that also plays a role in iron efflux from cells. It can thus help to regulate cellular iron homeostasis. In the CNS, Cp is expressed as a membrane-anchored form by astrocytes. Here, we assessed the role of Cp in permanent middle cerebral artery occlusion (pMCAO)...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331473/ https://www.ncbi.nlm.nih.gov/pubmed/30670944 http://dx.doi.org/10.3389/fnins.2018.00988 |
_version_ | 1783387138854748160 |
---|---|
author | Ryan, Fari Zarruk, Juan G. Lößlein, Lena David, Samuel |
author_facet | Ryan, Fari Zarruk, Juan G. Lößlein, Lena David, Samuel |
author_sort | Ryan, Fari |
collection | PubMed |
description | Ceruloplasmin (Cp) is a ferroxidase that also plays a role in iron efflux from cells. It can thus help to regulate cellular iron homeostasis. In the CNS, Cp is expressed as a membrane-anchored form by astrocytes. Here, we assessed the role of Cp in permanent middle cerebral artery occlusion (pMCAO) comparing wildtype and Cp null mice. Our studies show that the lesion size is larger and functional recovery impaired in Cp null mice compared to wildtype mice. Expression of Cp increased ninefold at 72 h after pMCAO and remained elevated about twofold at day 14. We also assessed changes in mRNA and protein expression of molecules involved in iron homeostasis. As expected there was a reduction in ferroportin in Cp null mice at 72 h. There was also a remarkable increase in DMT1 protein in both genotypes at 72 h, being much higher in wildtype mice (19.5-fold), that then remained elevated about twofold at 14 days. No difference was seen in transferrin receptor 1 (TfR1) expression, except a small reduction in wildtype mice at 72 h, suggesting that the increase in DMT1 may underlie iron uptake independent of TfR1-endosomal uptake. There was also an increase of ferritin light chain in both genotypes. Iron histochemistry showed increased iron accumulation after pMCAO, initially along the lesion border and later throughout the lesion. Immunofluorescence labeling for ferritin (a surrogate marker for iron) and GFAP or CD11b showed increased ferritin in GFAP+ astrocytes along the lesion border in Cp null mice, while CD11b+ macrophages expressed ferritin equally in both genotypes. Increased lipid peroxidation assessed by 4HNE staining was increased threefold in Cp null mice at 72 h after pMCAO; and 3-nitrotyrosine labeling showed a similar trend. Three key pro-inflammatory cytokines (IL-1β, TNFα, and IL-6) were markedly increased at 24 h after pMCAO equally in both genotypes, and remained elevated at lower levels later, indicating that the lack of Cp does not alter key inflammatory cytokine expression after pMCAO. These data indicate that Cp expression is rapidly upregulated after pMCAO, and loss of Cp results in dysregulation of iron homeostasis, increased oxidative damage, greater lesion size and impaired recovery of function. |
format | Online Article Text |
id | pubmed-6331473 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63314732019-01-22 Ceruloplasmin Plays a Neuroprotective Role in Cerebral Ischemia Ryan, Fari Zarruk, Juan G. Lößlein, Lena David, Samuel Front Neurosci Neuroscience Ceruloplasmin (Cp) is a ferroxidase that also plays a role in iron efflux from cells. It can thus help to regulate cellular iron homeostasis. In the CNS, Cp is expressed as a membrane-anchored form by astrocytes. Here, we assessed the role of Cp in permanent middle cerebral artery occlusion (pMCAO) comparing wildtype and Cp null mice. Our studies show that the lesion size is larger and functional recovery impaired in Cp null mice compared to wildtype mice. Expression of Cp increased ninefold at 72 h after pMCAO and remained elevated about twofold at day 14. We also assessed changes in mRNA and protein expression of molecules involved in iron homeostasis. As expected there was a reduction in ferroportin in Cp null mice at 72 h. There was also a remarkable increase in DMT1 protein in both genotypes at 72 h, being much higher in wildtype mice (19.5-fold), that then remained elevated about twofold at 14 days. No difference was seen in transferrin receptor 1 (TfR1) expression, except a small reduction in wildtype mice at 72 h, suggesting that the increase in DMT1 may underlie iron uptake independent of TfR1-endosomal uptake. There was also an increase of ferritin light chain in both genotypes. Iron histochemistry showed increased iron accumulation after pMCAO, initially along the lesion border and later throughout the lesion. Immunofluorescence labeling for ferritin (a surrogate marker for iron) and GFAP or CD11b showed increased ferritin in GFAP+ astrocytes along the lesion border in Cp null mice, while CD11b+ macrophages expressed ferritin equally in both genotypes. Increased lipid peroxidation assessed by 4HNE staining was increased threefold in Cp null mice at 72 h after pMCAO; and 3-nitrotyrosine labeling showed a similar trend. Three key pro-inflammatory cytokines (IL-1β, TNFα, and IL-6) were markedly increased at 24 h after pMCAO equally in both genotypes, and remained elevated at lower levels later, indicating that the lack of Cp does not alter key inflammatory cytokine expression after pMCAO. These data indicate that Cp expression is rapidly upregulated after pMCAO, and loss of Cp results in dysregulation of iron homeostasis, increased oxidative damage, greater lesion size and impaired recovery of function. Frontiers Media S.A. 2019-01-08 /pmc/articles/PMC6331473/ /pubmed/30670944 http://dx.doi.org/10.3389/fnins.2018.00988 Text en Copyright © 2019 Ryan, Zarruk, Lößlein and David. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Ryan, Fari Zarruk, Juan G. Lößlein, Lena David, Samuel Ceruloplasmin Plays a Neuroprotective Role in Cerebral Ischemia |
title | Ceruloplasmin Plays a Neuroprotective Role in Cerebral Ischemia |
title_full | Ceruloplasmin Plays a Neuroprotective Role in Cerebral Ischemia |
title_fullStr | Ceruloplasmin Plays a Neuroprotective Role in Cerebral Ischemia |
title_full_unstemmed | Ceruloplasmin Plays a Neuroprotective Role in Cerebral Ischemia |
title_short | Ceruloplasmin Plays a Neuroprotective Role in Cerebral Ischemia |
title_sort | ceruloplasmin plays a neuroprotective role in cerebral ischemia |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331473/ https://www.ncbi.nlm.nih.gov/pubmed/30670944 http://dx.doi.org/10.3389/fnins.2018.00988 |
work_keys_str_mv | AT ryanfari ceruloplasminplaysaneuroprotectiveroleincerebralischemia AT zarrukjuang ceruloplasminplaysaneuroprotectiveroleincerebralischemia AT loßleinlena ceruloplasminplaysaneuroprotectiveroleincerebralischemia AT davidsamuel ceruloplasminplaysaneuroprotectiveroleincerebralischemia |