Cargando…
Predicting Hemodynamic Shock from Thermal Images using Machine Learning
Proactive detection of hemodynamic shock can prevent organ failure and save lives. Thermal imaging is a non-invasive, non-contact modality to capture body surface temperature with the potential to reveal underlying perfusion disturbance in shock. In this study, we automate early detection and predic...
Autores principales: | Nagori, Aditya, Dhingra, Lovedeep Singh, Bhatnagar, Ambika, Lodha, Rakesh, Sethi, Tavpritesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331545/ https://www.ncbi.nlm.nih.gov/pubmed/30643187 http://dx.doi.org/10.1038/s41598-018-36586-8 |
Ejemplares similares
-
Early Prediction of Hemodynamic Shock in Pediatric Intensive Care Units With Deep Learning on Thermal Videos
por: Vats, Vanshika, et al.
Publicado: (2022) -
Early prediction of hypothermia in pediatric intensive care units using machine learning
por: Singh, Pradeep, et al.
Publicado: (2022) -
Predicting Emerging Themes in Rapidly Expanding COVID-19 Literature With Unsupervised Word Embeddings and Machine Learning: Evidence-Based Study
por: Pal, Ridam, et al.
Publicado: (2022) -
Genomic Surveillance of COVID-19 Variants With Language Models and Machine Learning
por: Nagpal, Sargun, et al.
Publicado: (2022) -
VacSIM: Learning effective strategies for COVID-19 vaccine distribution using reinforcement learning
por: Awasthi, Raghav, et al.
Publicado: (2022)