Cargando…

Functional and morphologic study of retinal hypoperfusion injury induced by bilateral common carotid artery occlusion in rats

Retinal hypoperfusion injury is the pathophysiologic basis of ocular ischemic syndrome (OIS) which often leads to severe visual loss. In this study, we aimed to establish a rat model of retinal chronic hypoperfusion by bilateral common carotid artery occlusion (BCCAO) and observe changes in the reti...

Descripción completa

Detalles Bibliográficos
Autores principales: Qin, Yali, Ji, Meiqi, Deng, Tingting, Luo, Dan, Zi, Yingxin, Pan, Lin, Wang, Zhijun, Jin, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331588/
https://www.ncbi.nlm.nih.gov/pubmed/30643163
http://dx.doi.org/10.1038/s41598-018-36400-5
Descripción
Sumario:Retinal hypoperfusion injury is the pathophysiologic basis of ocular ischemic syndrome (OIS) which often leads to severe visual loss. In this study, we aimed to establish a rat model of retinal chronic hypoperfusion by bilateral common carotid artery occlusion (BCCAO) and observe changes in the retinal function and morphology. We found that model rats showed retinal arteriosclerosis, slight dilated retinal vein, small hemangiomas, hemorrhages, vascular segmental filling, and nonperfused areas after 2 weeks of BCCAO. In the model rats, the retinal circulation time was significantly prolonged by fluorescein fundus angiography (FFA), the latency of a and b waves was delayed and the amplitude was decreased significantly at each time point by electroretinogram (ERG), and the perfusion of the eyes continued to reduced. Morphologic and ultrastructural changes covered that the retinal ganglion cells (RGCs) presented obvious apoptosis and the thickness in the retinal layers were significantly thinner. Collectively, these findings suggested that BCCAO induced retinal hypoperfusion injury in the model rats, thus providing an ideal animal model for the study of OIS.