Cargando…
Bayesian selection for coarse-grained models of liquid water
The necessity for accurate and computationally efficient representations of water in atomistic simulations that can span biologically relevant timescales has born the necessity of coarse-grained (CG) modeling. Despite numerous advances, CG water models rely mostly on a-priori specified assumptions....
Autores principales: | Zavadlav, Julija, Arampatzis, Georgios, Koumoutsakos, Petros |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331618/ https://www.ncbi.nlm.nih.gov/pubmed/30643172 http://dx.doi.org/10.1038/s41598-018-37471-0 |
Ejemplares similares
-
Machine learning coarse grained models for water
por: Chan, Henry, et al.
Publicado: (2019) -
Detection of arterial wall abnormalities via Bayesian model selection
por: Larson, Karen, et al.
Publicado: (2019) -
Polarizable Water Model for the Coarse-Grained MARTINI Force Field
por: Yesylevskyy, Semen O., et al.
Publicado: (2010) -
Adaptive Resolution Simulation of Supramolecular Water:
The Concurrent Making, Breaking, and Remaking of Water Bundles
por: Zavadlav, Julija, et al.
Publicado: (2016) -
Automated
Optimization of Water–Water Interaction
Parameters for a Coarse-Grained Model
por: Fogarty, Joseph C., et al.
Publicado: (2014)