Cargando…
Melatonin attenuates acute kidney ischemia/reperfusion injury in diabetic rats by activation of the SIRT1/Nrf2/HO-1 signaling pathway
Background and aims: Diabetic kidney is more sensitive to ischemia/reperfusion (I/R) injury, which is associated with increased oxidative stress and impaired nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Melatonin, a hormone that is secreted with the rhythm of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331666/ https://www.ncbi.nlm.nih.gov/pubmed/30578379 http://dx.doi.org/10.1042/BSR20181614 |
Sumario: | Background and aims: Diabetic kidney is more sensitive to ischemia/reperfusion (I/R) injury, which is associated with increased oxidative stress and impaired nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Melatonin, a hormone that is secreted with the rhythm of the light/dark cycle, has antioxidative effects in reducing acute kidney injury (AKI). However, the molecular mechanism of melatonin protection against kidney I/R injury in the state of diabetes is still unknown. In the present study, we hypothesized that melatonin attenuates renal I/R injury in diabetes by activating silent information regulator 2 associated protein 1 (SIRT1) expression and Nrf2/HO-1 signaling. Methods: Control or streptozotocin (STZ)-induced Type 1 diabetic rats were treated with or without melatonin for 4 weeks. Renal I/R injury was achieved by clamping both left and right renal pedicles for 30 min followed by reperfusion for 48 h. Results: Diabetic rats that were treated with melatonin undergoing I/R injury prevented renal injury from I/R, in aspects of the histopathological score, cell apoptosis, and oxidative stress in kidney, accompanied with decreased expressions of SIRT1, Nrf2, and HO-1 as compared with those in control rats. All these alterations were attenuated or prevented by melatonin treatment; but these beneficial effects of melatonin were abolished by selective inhibition of SIRT1 with EX527. Conclusion: These findings suggest melatonin could attenuate renal I/R injury in diabetes, possibly through improving SIRT1/Nrf2/HO-1 signaling. |
---|