Cargando…

Synthesis of a Stable Primary-Alkyl-Substituted Selenenyl Iodide and Its Hydrolytic Conversion to the Corresponding Selenenic Acid

A primary-alkyl-substituted selenenyl iodide was successfully synthesized through oxidative iodination of a selenol with N-iodosuccinimide by taking advantage of a cavity-shaped steric protection group. The selenenyl iodide exhibited high thermal stability and remained unchanged upon heating at 100...

Descripción completa

Detalles Bibliográficos
Autores principales: Sase, Shohei, Kakimoto, Ryo, Kimura, Ryutaro, Goto, Kei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331843/
https://www.ncbi.nlm.nih.gov/pubmed/26633336
http://dx.doi.org/10.3390/molecules201219773
Descripción
Sumario:A primary-alkyl-substituted selenenyl iodide was successfully synthesized through oxidative iodination of a selenol with N-iodosuccinimide by taking advantage of a cavity-shaped steric protection group. The selenenyl iodide exhibited high thermal stability and remained unchanged upon heating at 100 °C for 3 h in [D(8)]toluene. The selenenyl iodide was reduced to the corresponding selenol by treatment with dithiothreitol. Hydrolysis of the selenenyl iodide under alkaline conditions afforded the corresponding selenenic acid almost quantitatively, corroborating the chemical validity of the recent proposal that hydrolysis of a selenenyl iodide to a selenenic acid is potentially involved in the catalytic mechanism of an iodothyronine deiodinase.