Cargando…

Qualitative and Quantitative Analysis of the Major Constituents in Shexiang Tongxin Dropping Pill by HPLC-Q-TOF-MS/MS and UPLC-QqQ-MS/MS

Shexiang Tongxin dropping pill (STP) is a traditional Chinese medicine formula that consists of total saponins of ginseng, synthetic Calculus bovis, bear gall, Venenum bufonis, borneol and Salvia miltiorrhiza. STP has been widely used in China and Southeast Asia for the treatment of cardiovascular d...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Daxin, Lin, Shan, Xu, Wen, Huang, Mingqing, Chu, Jianfeng, Xiao, Fei, Lin, Jiumao, Peng, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331871/
https://www.ncbi.nlm.nih.gov/pubmed/26473821
http://dx.doi.org/10.3390/molecules201018597
Descripción
Sumario:Shexiang Tongxin dropping pill (STP) is a traditional Chinese medicine formula that consists of total saponins of ginseng, synthetic Calculus bovis, bear gall, Venenum bufonis, borneol and Salvia miltiorrhiza. STP has been widely used in China and Southeast Asia for the treatment of cardiovascular diseases. In this study, a qualitative analytical method using high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed for identification of the major constituents in STP. Based on the retention time and MS spectra, 41 components were identified by comparison with reference compounds and literature data. Moreover, using ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry in multiple-reaction monitoring mode, we quantified 13 of the identified constituents (ginsenoside Rg1, ginsenoside Rk3, cinobufagin, arenobufagin, bufalin, resibufogenin, tanshinone IIA, taurine, tauroursodeoxycholic acid, taurocholic acid, cholic acid, deoxycholic acid, and chenodeoxycholic acid). These results suggest that this new approach is applicable for the routine analysis and quality control of STP products and provides fundamental data for further in vivo pharmacokinetical studies.