Cargando…

α-Glucosidase Inhibitors from Vauquelinia corymbosa

The α-glucosidase inhibitory activity of an aqueous extract and compounds from the aerial parts of V. corymbosa was demonstrated with yeast and rat small intestinal α-glucosidases. The aqueous extract inhibited yeast α-glucosidase with a half maximal inhibitory concentration (IC(50)) of 28.6 μg/mL....

Descripción completa

Detalles Bibliográficos
Autores principales: Flores-Bocanegra, Laura, Pérez-Vásquez, Araceli, Torres-Piedra, Mariana, Bye, Robert, Linares, Edelmira, Mata, Rachel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332183/
https://www.ncbi.nlm.nih.gov/pubmed/26307962
http://dx.doi.org/10.3390/molecules200815330
Descripción
Sumario:The α-glucosidase inhibitory activity of an aqueous extract and compounds from the aerial parts of V. corymbosa was demonstrated with yeast and rat small intestinal α-glucosidases. The aqueous extract inhibited yeast α-glucosidase with a half maximal inhibitory concentration (IC(50)) of 28.6 μg/mL. Bioassay-guided fractionation of the extract led to the isolation of several compounds, including one cyanogenic glycoside [prunasin (1)], five flavonoids [(−)-epi-catechin (2), hyperoside (3), isoquercetin (4), quercitrin (5) and quercetin-3-O-(6′′-benzoyl)-β-galactoside (6)] and two simple aromatic compounds [picein (7) and methylarbutin (8)]. The most active compound was 6 with IC(50) values of 30 μM in the case of yeast α-glucosidase, and 437 μM in the case of the mammalian enzyme. According to the kinetic analyses performed with rat and yeast enzymes, this compound behaved as mixed-type inhibitor; the calculated inhibition constants (K(i)) were 212 and 50 μM, respectively. Molecular docking analyses with yeast and mammalian α-glucosidases revealed that compound 6 bind differently to these enzymes. Altogether, the results of this work suggest that preparations of V. corymbosa might delay glucose absorption in vivo.