Cargando…
Extremely Randomized Machine Learning Methods for Compound Activity Prediction
Speed, a relatively low requirement for computational resources and high effectiveness of the evaluation of the bioactivity of compounds have caused a rapid growth of interest in the application of machine learning methods to virtual screening tasks. However, due to the growth of the amount of data...
Autores principales: | Czarnecki, Wojciech M., Podlewska, Sabina, Bojarski, Andrzej J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332304/ https://www.ncbi.nlm.nih.gov/pubmed/26569196 http://dx.doi.org/10.3390/molecules201119679 |
Ejemplares similares
-
Substructural Connectivity Fingerprint and Extreme Entropy Machines—A New Method of Compound Representation and Analysis
por: Rataj, Krzysztof, et al.
Publicado: (2018) -
Robust optimization of SVM hyperparameters in the classification of bioactive compounds
por: Czarnecki, Wojciech M, et al.
Publicado: (2015) -
The influence of the inactives subset generation on the performance of machine learning methods
por: Smusz, Sabina, et al.
Publicado: (2013) -
The influence of hashed fingerprints density on the machine learning methods performance
por: Smusz, Sabina, et al.
Publicado: (2013) -
The influence of training actives/inactives ratio on machine learning performance
por: Kurczab, Rafał, et al.
Publicado: (2013)