Cargando…

Immobilization of Cyclooxygenase-2 on Silica Gel Microspheres: Optimization and Characterization

In this study, immobilized COX-2 was successfully constructed through glutaraldehyde-mediated covalent coupling on functional silica gel microspheres. The optimum conditions, properties, and morphological characteristics of the immobilized COX-2 were investigated. The optimal immobilization process...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Qian, Chen, Junhui, Wang, Yanlong, Li, Zhaoyong, Li, Xianguo, Sun, Chengjun, Zheng, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332325/
https://www.ncbi.nlm.nih.gov/pubmed/26556331
http://dx.doi.org/10.3390/molecules201119670
Descripción
Sumario:In this study, immobilized COX-2 was successfully constructed through glutaraldehyde-mediated covalent coupling on functional silica gel microspheres. The optimum conditions, properties, and morphological characteristics of the immobilized COX-2 were investigated. The optimal immobilization process was as follows: about 0.02 g of aminated silica gel microspheres was activated by 0.25% GA solution for 6 h and mixed with 5 U of free recombinant COX-2 solution. Then, the mixture was shaken for 8 h at 20 °C. Results showed that the immobilized COX-2 produced by this method exhibited excellent biocatalytic activity, equivalent to that of free COX-2 under the test conditions employed. The best biocatalytic activity of immobilized COX-2 appeared at pH 8.0 and still maintained at about 84% (RSD < 7.39%, n = 3) at pH 10.0. For temperature tolerance, immobilized COX-2 exhibited its maximum biocatalytic activity at 40 °C and about 68% (RSD < 6.99%, n = 3) of the activity was maintained at 60 °C. The immobilized COX-2 retained over 85% (RSD < 7.26%, n = 3) of its initial biocatalytic activity after five cycles, and after 10 days storage, the catalytic activity of immobilized COX-2 still maintained at about 95% (RSD < 3.08%, n = 3). These characteristics ensured the convenient use of the immobilized COX-2 and reduced its production cost.