Cargando…

Retinoprotective Effects of Bilberry Anthocyanins via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Mechanisms in a Visible Light-Induced Retinal Degeneration Model in Pigmented Rabbits

Excessive visible light exposure can induce damage to retinal cells and contribute to the development or progression of age-related macular degeneration. In this study we created a model of phototoxicity in pigmented rabbits. Furthermore, we investigated the protective effect of bilberry anthocyanin...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yong, Zhao, Liang, Lu, Feng, Yang, Xue, Deng, Qianchun, Ji, Baoping, Huang, Fenghong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332335/
https://www.ncbi.nlm.nih.gov/pubmed/26694327
http://dx.doi.org/10.3390/molecules201219785
Descripción
Sumario:Excessive visible light exposure can induce damage to retinal cells and contribute to the development or progression of age-related macular degeneration. In this study we created a model of phototoxicity in pigmented rabbits. Furthermore, we investigated the protective effect of bilberry anthocyanin extract (BAE, Table A1) and explored the possible mechanisms of action in this model. The model of light-induced retinal damage was established by the pigmented rabbits exposed to light at 18,000 lx for 2 h, and they were sacrificed on day 7. After administration of BAE at dosages of 250 and 500 mg/kg/day, retinal dysfunction was significantly inhibited in terms of electroretinograms, and the decreased thicknesses of retinal outer nuclear layer and lengths of the outer segments of the photoreceptor cells were suppressed in rabbits with retinal degeneration. BAE attenuated the changes caused by light to certain apoptotic proteins (Bax, Bcl-2, and caspase-3). The extract increased the levels of superoxide dismutase, glutathione peroxidase, and catalase, as well as the total antioxidant capacity, but decreased the malondialdehyde level in the retinal cells. BAE inhibited the light-induced elevation in the levels of proinflammatory cytokines and angiogenic parameters (IL-1β and VEGF). Results showed that visible light-induced retinal degeneration model in pigmented rabbits was successfully established and BAE exhibited protective effects by increasing the antioxidant defense mechanisms, suppressing lipid peroxidation and proinflammatory cytokines, and inhibiting retinal cells apoptosis.