Cargando…

Enhanced Bioaccessibility of Crocetin Sugar Esters from Saffron in Infusions Rich in Natural Phenolic Antioxidants

The present study aims to examine whether and to what extent the bioaccessibility of the major saffron apocarotenoids, namely crocetin sugar esters (CRTSEs), is affected by the presence of strong water-soluble antioxidants, ingredients of the herbs found in commercial tea blends with saffron. An in...

Descripción completa

Detalles Bibliográficos
Autores principales: Ordoudi, Stella A., Kyriakoudi, Anastasia, Tsimidou, Maria Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332399/
https://www.ncbi.nlm.nih.gov/pubmed/26404216
http://dx.doi.org/10.3390/molecules201017760
Descripción
Sumario:The present study aims to examine whether and to what extent the bioaccessibility of the major saffron apocarotenoids, namely crocetin sugar esters (CRTSEs), is affected by the presence of strong water-soluble antioxidants, ingredients of the herbs found in commercial tea blends with saffron. An in vitro digestion model was applied to infusions from these products to investigate the possible changes. All of the studied infusions were rich in total phenols (9.9–22.5 mg caffeic acid equivalents/100 mg dry infusion) and presented strong DPPH radical scavenging activity regardless of the composition of the corresponding herbal blends. RP-HPLC-DAD and LC-MS analysis enabled the grouping of the infusions into hydroxycinnamic acid-rich and in flavan-3-ol-rich ones. CRTSEs in herbal tea infusions were found to be significantly more bioaccessible (66.3%–88.6%) than those in the reference saffron infusion (60.9%). The positive role of strong phenolic antioxidants (caffeic acid, rosmarinic acid) on the stability of CRTSEs was also evidenced in model binary mixtures. On the contrary, cinnamic acid, exerting no antioxidant activity, did not have such an effect. Our findings suggest that strong radical scavengers may protect the crocetin sugar esters from oxidation during digestion when present in excess.