Cargando…
Sparse Computation in Adaptive Spiking Neural Networks
Artificial Neural Networks (ANNs) are bio-inspired models of neural computation that have proven highly effective. Still, ANNs lack a natural notion of time, and neural units in ANNs exchange analog values in a frame-based manner, a computationally and energetically inefficient form of communication...
Autores principales: | Zambrano, Davide, Nusselder, Roeland, Scholte, H. Steven, Bohté, Sander M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332470/ https://www.ncbi.nlm.nih.gov/pubmed/30670943 http://dx.doi.org/10.3389/fnins.2018.00987 |
Ejemplares similares
-
Editorial: Artificial Neural Networks as Models of Neural Information Processing
por: van Gerven, Marcel, et al.
Publicado: (2017) -
Depth in convolutional neural networks solves scene segmentation
por: Seijdel, Noor, et al.
Publicado: (2020) -
Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity
por: Dummer, Benjamin, et al.
Publicado: (2014) -
Self-Consistent Scheme for Spike-Train Power Spectra in Heterogeneous Sparse Networks
por: Pena, Rodrigo F. O., et al.
Publicado: (2018) -
Mechanisms of human dynamic object recognition revealed by sequential deep neural networks
por: Sörensen, Lynn K. A., et al.
Publicado: (2023)