Cargando…
High Performance and Structural Stability of K and Cl Co-Doped LiNi(0.5)Co(0.2)Mn(0.3)O(2) Cathode Materials in 4.6 Voltage
The high energy density lithium ion batteries are being pursued because of their extensive application in electric vehicles with a large mileage and storage energy station with a long life. So, increasing the charge voltage becomes a strategy to improve the energy density. But it brings some harmful...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332473/ https://www.ncbi.nlm.nih.gov/pubmed/30671428 http://dx.doi.org/10.3389/fchem.2018.00643 |
_version_ | 1783387359682756608 |
---|---|
author | Chen, Zhaoyong Gong, Xiaolong Zhu, Huali Cao, Kaifeng Liu, Qiming Liu, Jun Li, Lingjun Duan, Junfei |
author_facet | Chen, Zhaoyong Gong, Xiaolong Zhu, Huali Cao, Kaifeng Liu, Qiming Liu, Jun Li, Lingjun Duan, Junfei |
author_sort | Chen, Zhaoyong |
collection | PubMed |
description | The high energy density lithium ion batteries are being pursued because of their extensive application in electric vehicles with a large mileage and storage energy station with a long life. So, increasing the charge voltage becomes a strategy to improve the energy density. But it brings some harmful to the structural stability. In order to find the equilibrium between capacity and structure stability, the K and Cl co-doped LiNi(0.5)Co(0.2)Mn(0.3)O(2) (NCM) cathode materials are designed based on defect theory, and prepared by solid state reaction. The structure is investigated by means of X-ray diffraction (XRD), rietveld refinements, scanning electron microscope (SEM), XPS, EDS mapping and transmission electron microscope (TEM). Electrochemical properties are measured through electrochemical impedance spectroscopy (EIS), cyclic voltammogram curves (CV), charge/discharge tests. The results of XRD, EDS mapping, and XPS show that K and Cl are successfully incorporated into the lattice of NCM cathode materials. Rietveld refinements along with TEM analysis manifest K and Cl co-doping can effectively reduce cation mixing and make the layered structure more complete. After 100 cycles at 1 C, the K and Cl co-doped NCM retains a more integrated layered structure compared to the pristine NCM. It indicates the co-doping can effectively strengthen the layer structure and suppress the phase transition to some degree during repeated charge and discharge process. Through CV curves, it can be found that K and Cl co-doping can weaken the electrode polarization and improve the electrochemical performance. Electrochemical tests show that the discharge capacity of Li(0.99)K(0.01)(Ni(0.5)Co(0.3)Mn(0.2))O(1.99)Cl(0.01) (KCl-NCM) are far higher than NCM at 5 C, and capacity retention reaches 78.1% after 100 cycles at 1 C. EIS measurement indicates that doping K and Cl contributes to the better lithium ion diffusion and the lower charge transfer resistance. |
format | Online Article Text |
id | pubmed-6332473 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63324732019-01-22 High Performance and Structural Stability of K and Cl Co-Doped LiNi(0.5)Co(0.2)Mn(0.3)O(2) Cathode Materials in 4.6 Voltage Chen, Zhaoyong Gong, Xiaolong Zhu, Huali Cao, Kaifeng Liu, Qiming Liu, Jun Li, Lingjun Duan, Junfei Front Chem Chemistry The high energy density lithium ion batteries are being pursued because of their extensive application in electric vehicles with a large mileage and storage energy station with a long life. So, increasing the charge voltage becomes a strategy to improve the energy density. But it brings some harmful to the structural stability. In order to find the equilibrium between capacity and structure stability, the K and Cl co-doped LiNi(0.5)Co(0.2)Mn(0.3)O(2) (NCM) cathode materials are designed based on defect theory, and prepared by solid state reaction. The structure is investigated by means of X-ray diffraction (XRD), rietveld refinements, scanning electron microscope (SEM), XPS, EDS mapping and transmission electron microscope (TEM). Electrochemical properties are measured through electrochemical impedance spectroscopy (EIS), cyclic voltammogram curves (CV), charge/discharge tests. The results of XRD, EDS mapping, and XPS show that K and Cl are successfully incorporated into the lattice of NCM cathode materials. Rietveld refinements along with TEM analysis manifest K and Cl co-doping can effectively reduce cation mixing and make the layered structure more complete. After 100 cycles at 1 C, the K and Cl co-doped NCM retains a more integrated layered structure compared to the pristine NCM. It indicates the co-doping can effectively strengthen the layer structure and suppress the phase transition to some degree during repeated charge and discharge process. Through CV curves, it can be found that K and Cl co-doping can weaken the electrode polarization and improve the electrochemical performance. Electrochemical tests show that the discharge capacity of Li(0.99)K(0.01)(Ni(0.5)Co(0.3)Mn(0.2))O(1.99)Cl(0.01) (KCl-NCM) are far higher than NCM at 5 C, and capacity retention reaches 78.1% after 100 cycles at 1 C. EIS measurement indicates that doping K and Cl contributes to the better lithium ion diffusion and the lower charge transfer resistance. Frontiers Media S.A. 2019-01-08 /pmc/articles/PMC6332473/ /pubmed/30671428 http://dx.doi.org/10.3389/fchem.2018.00643 Text en Copyright © 2019 Chen, Gong, Zhu, Cao, Liu, Liu, Li and Duan. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Chemistry Chen, Zhaoyong Gong, Xiaolong Zhu, Huali Cao, Kaifeng Liu, Qiming Liu, Jun Li, Lingjun Duan, Junfei High Performance and Structural Stability of K and Cl Co-Doped LiNi(0.5)Co(0.2)Mn(0.3)O(2) Cathode Materials in 4.6 Voltage |
title | High Performance and Structural Stability of K and Cl Co-Doped LiNi(0.5)Co(0.2)Mn(0.3)O(2) Cathode Materials in 4.6 Voltage |
title_full | High Performance and Structural Stability of K and Cl Co-Doped LiNi(0.5)Co(0.2)Mn(0.3)O(2) Cathode Materials in 4.6 Voltage |
title_fullStr | High Performance and Structural Stability of K and Cl Co-Doped LiNi(0.5)Co(0.2)Mn(0.3)O(2) Cathode Materials in 4.6 Voltage |
title_full_unstemmed | High Performance and Structural Stability of K and Cl Co-Doped LiNi(0.5)Co(0.2)Mn(0.3)O(2) Cathode Materials in 4.6 Voltage |
title_short | High Performance and Structural Stability of K and Cl Co-Doped LiNi(0.5)Co(0.2)Mn(0.3)O(2) Cathode Materials in 4.6 Voltage |
title_sort | high performance and structural stability of k and cl co-doped lini(0.5)co(0.2)mn(0.3)o(2) cathode materials in 4.6 voltage |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332473/ https://www.ncbi.nlm.nih.gov/pubmed/30671428 http://dx.doi.org/10.3389/fchem.2018.00643 |
work_keys_str_mv | AT chenzhaoyong highperformanceandstructuralstabilityofkandclcodopedlini05co02mn03o2cathodematerialsin46voltage AT gongxiaolong highperformanceandstructuralstabilityofkandclcodopedlini05co02mn03o2cathodematerialsin46voltage AT zhuhuali highperformanceandstructuralstabilityofkandclcodopedlini05co02mn03o2cathodematerialsin46voltage AT caokaifeng highperformanceandstructuralstabilityofkandclcodopedlini05co02mn03o2cathodematerialsin46voltage AT liuqiming highperformanceandstructuralstabilityofkandclcodopedlini05co02mn03o2cathodematerialsin46voltage AT liujun highperformanceandstructuralstabilityofkandclcodopedlini05co02mn03o2cathodematerialsin46voltage AT lilingjun highperformanceandstructuralstabilityofkandclcodopedlini05co02mn03o2cathodematerialsin46voltage AT duanjunfei highperformanceandstructuralstabilityofkandclcodopedlini05co02mn03o2cathodematerialsin46voltage |