Cargando…

Tumor-derived extracellular vesicles inhibit osteogenesis and exacerbate myeloma bone disease

Background: As a hallmark driver of multiple myeloma (MM), MM bone disease (MBD) is unique in that it is characterized by severely impaired osteoblast activity resulting from blocked osteogenesis in bone marrow-derived mesenchymal stem cells (BM-MSCs). The mechanisms underlying this preferential blo...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Liming, Lei, Qian, Wang, Hongxiang, Xu, Cuiwei, Liu, Teng, Kong, Fancong, Yang, Cui, Yan, Guoxin, Sun, Li, Zhao, Aiqi, Chen, Wenlan, Hu, Yu, Xie, Hui, Cao, Yulin, Fu, Fenfen, Yuan, Guolin, Chen, Zhichao, Guo, An-Yuan, Li, Qiubai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332790/
https://www.ncbi.nlm.nih.gov/pubmed/30662562
http://dx.doi.org/10.7150/thno.27550
Descripción
Sumario:Background: As a hallmark driver of multiple myeloma (MM), MM bone disease (MBD) is unique in that it is characterized by severely impaired osteoblast activity resulting from blocked osteogenesis in bone marrow-derived mesenchymal stem cells (BM-MSCs). The mechanisms underlying this preferential blockade are incompletely understood. Methods: miRNA expression of MM cell-derived extracellular vesicles (MM-EVs) was detected by RNA sequencing. MM-EVs impaired osteogenesis and exacerbated MBD were in vitro and in vivo validated by histochemical staining, qPCR and micro-CT. We additionally examined the correlation between CD138(+) circulating EVs (cirEVs) count and bone lesion in de novo MM patients. Results: Here, by sequencing and bioinformatics analysis, we found that MM-EVs were enriched in various molecules negatively regulating osteogenesis. We experimentally verified that MM-EVs inhibited BM-MSC osteogenesis, induced elevated expression of miR-103a-3p inhibiting osteogenesis in BM-MSCs, and increased cell viability and interleukin-6 secretion in MM cells. In a mouse model, MM-EVs that were injected into the marrow space of the left tibia led to impaired osteogenesis and exacerbated MBD and MM progression. Furthermore, the levels of CD138(+) cirEVs in the peripheral blood were positively correlated with the number of MM bone lesions in MM patients. Conclusions: These findings suggest that MM-EVs play a pivotal role in the development of severely impaired osteoblast activity, which represents a novel biomarker for the precise diagnosis of MBD and a compelling rationale for exploring MM-EVs as a therapeutic target.