Cargando…
Regulatory network analysis reveals the oncogenesis roles of feed-forward loops and therapeutic target in T-cell acute lymphoblastic leukemia
BACKGROUND: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Aberrant expressed genes contribute to the development and progression of T-ALL. However, the regulation underlying their aberrant expression remains elusive. Dysregulated expression of transcription f...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332896/ https://www.ncbi.nlm.nih.gov/pubmed/30646895 http://dx.doi.org/10.1186/s12920-018-0469-0 |
Sumario: | BACKGROUND: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Aberrant expressed genes contribute to the development and progression of T-ALL. However, the regulation underlying their aberrant expression remains elusive. Dysregulated expression of transcription factors and miRNAs played important regulatory roles in the pathogenesis of T-ALL. METHODS: In this study, we analyzed the alteration of transcriptome profiling and regulatory networks between T-ALL sample and normal T cell samples at transcriptional and post-transcriptional levels. RESULTS: Our results demonstrated that genes related to cell cycle and cell proliferation processes were significantly upregulated in T-ALL comparing to normal samples. Meanwhile, regulatory network analyses revealed that FOXM1, MYB, SOX4 and miR-21/19b as core regulators played vital roles in the development of T-ALL. FOXM1-miR-21-5p-CDC25A and MYB/SOX4-miR-19b-3p-RBBP8 were identified as important feed-forward loops involved in the oncogenesis of T-ALL. Drug-specific analyses showed that GSK-J4 may be an effective drug, and CDC25A/CAPN2/MCM2 could serve as potential therapeutic targets for T-ALL. CONCLUSIONS: This study may provide novel insights for the regulatory mechanisms underlying the development of T-ALL and potential therapeutic targets. |
---|