Cargando…
Influence of physico-chemical characteristics of sediment on the in situ spatial distribution of F-specific RNA phages in the riverbed
Riverbed sediment is commonly described as an enteric virus reservoir and thought to play an important role in water column contamination, especially during rainfall events. Although the occurrence and fate of faecal-derived viruses are fairly well characterized in water, little information is avail...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333113/ https://www.ncbi.nlm.nih.gov/pubmed/30649274 http://dx.doi.org/10.1093/femsec/fiy240 |
Sumario: | Riverbed sediment is commonly described as an enteric virus reservoir and thought to play an important role in water column contamination, especially during rainfall events. Although the occurrence and fate of faecal-derived viruses are fairly well characterized in water, little information is available on their presence as their interactions with sediment. This study aimed at determining the main environmental factors responsible for the presence of enteric viruses in riverbed sediment. Using a combination of microbiological and physico-chemical analyses of freshly field-sampled sediments, we demonstrated their contamination by faecal phages. The in situ spatial distribution of phages in sediment was mainly driven by sediment composition. A preferential phage accumulation occurred along one bank of the river, where the quantity of fine sands and clay particles smaller than 0.2 mm was the highest. Additionally, a mineralogical analysis revealed the influence of the heterogeneous presence of virus sorbents such as quartz, calcite, carbonates and iron-bearing phases (goethite) on the phage spatial pattern. A more precise knowledge of the composition of riverbed sediment is therefore useful for predicting preferential areas of enteric virus accumulation and should allow more accurate microbial risk assessment when using surface water for drinking water production or recreational activities. |
---|