Cargando…

A dosimetric study on the use of 3D‐printed customized boluses in photon therapy: A hydrogel and silica gel study

PURPOSE: The aim of the study was to compare the dose differences between two kinds of materials (silica gel and hydrogel) used to prepare boluses based on three‐dimensional (3D) printing technologies and commercial bolus in head phantoms simulating nose, ear, and parotid gland radiotherapy. METHODS...

Descripción completa

Detalles Bibliográficos
Autores principales: Kong, Yuehong, Yan, Tengfei, Sun, Yanze, Qian, Jianjun, Zhou, Gang, Cai, Shang, Tian, Ye
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333182/
https://www.ncbi.nlm.nih.gov/pubmed/30402935
http://dx.doi.org/10.1002/acm2.12489
Descripción
Sumario:PURPOSE: The aim of the study was to compare the dose differences between two kinds of materials (silica gel and hydrogel) used to prepare boluses based on three‐dimensional (3D) printing technologies and commercial bolus in head phantoms simulating nose, ear, and parotid gland radiotherapy. METHODS AND MATERIALS: We used 3D printing technology to make silica gel and hydrogel boluses. To evaluate the clinical feasibility, intensity modulated radiation therapy (IMRT) plans were created for head phantoms that were bolus‐free or had a commercial bolus, a silica gel bolus, or a hydrogel bolus. Dosimetry differences were compared in simulating nose, ear, and parotid gland radiotherapy separately. RESULTS: The air gaps were smaller in the silica gel and hydrogel bolus than the commercial one. In nose plans, it was shown that the V (95%) (relative volume that is covered by at least 95% of the prescription dose) of the silica gel (99.86%) and hydrogel (99.95%) bolus were better than the commercial one (98.39%) and bolus‐free (87.52%). Similarly, the homogeneity index (HI) and conformity index (CI) of the silica gel (0.06; 0.79) and hydrogel (0.058; 0.80) bolus were better than the commercial one (0.094; 0.72) and bolus‐free (0.59; 0.53). The parameters of results (HI, CI, V (95%)) were also better in 3D printing boluses than in the commercial bolus or without bolus in ear and parotid plans. CONCLUSIONS: Silica gel and hydrogel boluses were not only good for fit and a high level of comfort and repeatability, but also had better parameters in IMRT plans. They could replace the commercial bolus for clinical use.