Cargando…

Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection

Despite strong interest over many years, the usage of quantitative trait loci in plant breeding has often failed to live up to expectations. A key weak point in the utilisation of QTLs is the “quality” of markers used during marker-assisted selection (MAS): unreliable markers result in variable outc...

Descripción completa

Detalles Bibliográficos
Autores principales: Platten, John Damien, Cobb, Joshua Nathaniel, Zantua, Rochelle E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333336/
https://www.ncbi.nlm.nih.gov/pubmed/30645632
http://dx.doi.org/10.1371/journal.pone.0210529
_version_ 1783387543686873088
author Platten, John Damien
Cobb, Joshua Nathaniel
Zantua, Rochelle E.
author_facet Platten, John Damien
Cobb, Joshua Nathaniel
Zantua, Rochelle E.
author_sort Platten, John Damien
collection PubMed
description Despite strong interest over many years, the usage of quantitative trait loci in plant breeding has often failed to live up to expectations. A key weak point in the utilisation of QTLs is the “quality” of markers used during marker-assisted selection (MAS): unreliable markers result in variable outcomes, leading to a perception that MAS products fail to achieve reliable improvement. Most reports of markers used for MAS focus on markers derived from the mapping population. There are very few studies that examine the reliability of these markers in other genetic backgrounds, and critically, no metrics exist to describe and quantify this reliability. To improve the MAS process, this work proposes five core metrics that fully describe the reliability of a marker. These metrics give a comprehensive and quantitative measure of the ability of a marker to correctly classify germplasm as QTL[+]/[–], particularly against a background of high allelic diversity. Markers that score well on these metrics will have far higher reliability in breeding, and deficiencies in specific metrics give information on circumstances under which a marker may not be reliable. The metrics are applicable across different marker types and platforms, allowing an objective comparison of the performance of different markers irrespective of the platform. Evaluating markers using these metrics demonstrates that trait-specific markers consistently out-perform markers designed for other purposes. These metrics also provide a superb set of criteria for designing superior marker systems for a target QTL, enabling the selection of an optimal marker set before committing to design.
format Online
Article
Text
id pubmed-6333336
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-63333362019-01-31 Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection Platten, John Damien Cobb, Joshua Nathaniel Zantua, Rochelle E. PLoS One Research Article Despite strong interest over many years, the usage of quantitative trait loci in plant breeding has often failed to live up to expectations. A key weak point in the utilisation of QTLs is the “quality” of markers used during marker-assisted selection (MAS): unreliable markers result in variable outcomes, leading to a perception that MAS products fail to achieve reliable improvement. Most reports of markers used for MAS focus on markers derived from the mapping population. There are very few studies that examine the reliability of these markers in other genetic backgrounds, and critically, no metrics exist to describe and quantify this reliability. To improve the MAS process, this work proposes five core metrics that fully describe the reliability of a marker. These metrics give a comprehensive and quantitative measure of the ability of a marker to correctly classify germplasm as QTL[+]/[–], particularly against a background of high allelic diversity. Markers that score well on these metrics will have far higher reliability in breeding, and deficiencies in specific metrics give information on circumstances under which a marker may not be reliable. The metrics are applicable across different marker types and platforms, allowing an objective comparison of the performance of different markers irrespective of the platform. Evaluating markers using these metrics demonstrates that trait-specific markers consistently out-perform markers designed for other purposes. These metrics also provide a superb set of criteria for designing superior marker systems for a target QTL, enabling the selection of an optimal marker set before committing to design. Public Library of Science 2019-01-15 /pmc/articles/PMC6333336/ /pubmed/30645632 http://dx.doi.org/10.1371/journal.pone.0210529 Text en © 2019 Platten et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Platten, John Damien
Cobb, Joshua Nathaniel
Zantua, Rochelle E.
Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection
title Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection
title_full Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection
title_fullStr Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection
title_full_unstemmed Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection
title_short Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection
title_sort criteria for evaluating molecular markers: comprehensive quality metrics to improve marker-assisted selection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333336/
https://www.ncbi.nlm.nih.gov/pubmed/30645632
http://dx.doi.org/10.1371/journal.pone.0210529
work_keys_str_mv AT plattenjohndamien criteriaforevaluatingmolecularmarkerscomprehensivequalitymetricstoimprovemarkerassistedselection
AT cobbjoshuanathaniel criteriaforevaluatingmolecularmarkerscomprehensivequalitymetricstoimprovemarkerassistedselection
AT zantuarochellee criteriaforevaluatingmolecularmarkerscomprehensivequalitymetricstoimprovemarkerassistedselection