Cargando…
LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia
Long-term exposure to elevated levels of manganese (Mn) causes manganism, a neurodegenerative disorder with Parkinson’s disease (PD)-like symptoms. Increasing evidence suggests that leucine-rich repeat kinase 2 (LRRK2), which is highly expressed in microglia and macrophages, contributes to the infla...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333340/ https://www.ncbi.nlm.nih.gov/pubmed/30645642 http://dx.doi.org/10.1371/journal.pone.0210248 |
_version_ | 1783387544615911424 |
---|---|
author | Kim, Judong Pajarillo, Edward Rizor, Asha Son, Deok-Soo Lee, Jayden Aschner, Michael Lee, Eunsook |
author_facet | Kim, Judong Pajarillo, Edward Rizor, Asha Son, Deok-Soo Lee, Jayden Aschner, Michael Lee, Eunsook |
author_sort | Kim, Judong |
collection | PubMed |
description | Long-term exposure to elevated levels of manganese (Mn) causes manganism, a neurodegenerative disorder with Parkinson’s disease (PD)-like symptoms. Increasing evidence suggests that leucine-rich repeat kinase 2 (LRRK2), which is highly expressed in microglia and macrophages, contributes to the inflammation and neurotoxicity seen in autosomal dominant and sporadic PD. As gene-environment interactions have emerged as important modulators of PD-associated toxicity, LRRK2 may also mediate Mn-induced inflammation and pathogenesis. In this study, we investigated the role of LRRK2 in Mn-induced toxicity using human microglial cells (HMC3), LRRK2-wild-type (WT) and LRRK2-knockout (KO) RAW264.7 macrophage cells. Results showed that Mn activated LRRK2 kinase by phosphorylation of its serine residue at the 1292 position (S1292) as a marker of its kinase activity in macrophage and microglia, while inhibition with GSK2578215A (GSK) and MLi-2 abolished Mn-induced LRRK2 activation. LRRK2 deletion and its pharmacological inhibition attenuated Mn-induced apoptosis in macrophages and microglia, along with concomitant decreases in the pro-apoptotic Bcl-2-associated X (Bax) protein. LRRK2 deletion also attenuated Mn-induced production of reactive oxygen species (ROS) and the pro-inflammatory cytokine TNF-α. Mn-induced phosphorylation of mitogen-activated protein kinase (MAPK) p38 and ERK signaling proteins was significantly attenuated in LRRK2 KO cells and GSK-treated cells. Moreover, inhibition of MAPK p38 and ERK as well as LRRK2 attenuated Mn-induced oxidative stress and cytotoxicity. These findings suggest that LRRK2 kinase activity plays a critical role in Mn-induced toxicity via downstream activation of MAPK signaling in macrophage and microglia. Collectively, these results suggest that LRRK2 could be a potential molecular target for developing therapeutics to treat Mn-related neurodegenerative disorders. |
format | Online Article Text |
id | pubmed-6333340 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63333402019-01-31 LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia Kim, Judong Pajarillo, Edward Rizor, Asha Son, Deok-Soo Lee, Jayden Aschner, Michael Lee, Eunsook PLoS One Research Article Long-term exposure to elevated levels of manganese (Mn) causes manganism, a neurodegenerative disorder with Parkinson’s disease (PD)-like symptoms. Increasing evidence suggests that leucine-rich repeat kinase 2 (LRRK2), which is highly expressed in microglia and macrophages, contributes to the inflammation and neurotoxicity seen in autosomal dominant and sporadic PD. As gene-environment interactions have emerged as important modulators of PD-associated toxicity, LRRK2 may also mediate Mn-induced inflammation and pathogenesis. In this study, we investigated the role of LRRK2 in Mn-induced toxicity using human microglial cells (HMC3), LRRK2-wild-type (WT) and LRRK2-knockout (KO) RAW264.7 macrophage cells. Results showed that Mn activated LRRK2 kinase by phosphorylation of its serine residue at the 1292 position (S1292) as a marker of its kinase activity in macrophage and microglia, while inhibition with GSK2578215A (GSK) and MLi-2 abolished Mn-induced LRRK2 activation. LRRK2 deletion and its pharmacological inhibition attenuated Mn-induced apoptosis in macrophages and microglia, along with concomitant decreases in the pro-apoptotic Bcl-2-associated X (Bax) protein. LRRK2 deletion also attenuated Mn-induced production of reactive oxygen species (ROS) and the pro-inflammatory cytokine TNF-α. Mn-induced phosphorylation of mitogen-activated protein kinase (MAPK) p38 and ERK signaling proteins was significantly attenuated in LRRK2 KO cells and GSK-treated cells. Moreover, inhibition of MAPK p38 and ERK as well as LRRK2 attenuated Mn-induced oxidative stress and cytotoxicity. These findings suggest that LRRK2 kinase activity plays a critical role in Mn-induced toxicity via downstream activation of MAPK signaling in macrophage and microglia. Collectively, these results suggest that LRRK2 could be a potential molecular target for developing therapeutics to treat Mn-related neurodegenerative disorders. Public Library of Science 2019-01-15 /pmc/articles/PMC6333340/ /pubmed/30645642 http://dx.doi.org/10.1371/journal.pone.0210248 Text en © 2019 Kim et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Kim, Judong Pajarillo, Edward Rizor, Asha Son, Deok-Soo Lee, Jayden Aschner, Michael Lee, Eunsook LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia |
title | LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia |
title_full | LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia |
title_fullStr | LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia |
title_full_unstemmed | LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia |
title_short | LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia |
title_sort | lrrk2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333340/ https://www.ncbi.nlm.nih.gov/pubmed/30645642 http://dx.doi.org/10.1371/journal.pone.0210248 |
work_keys_str_mv | AT kimjudong lrrk2kinaseplaysacriticalroleinmanganeseinducedinflammationandapoptosisinmicroglia AT pajarilloedward lrrk2kinaseplaysacriticalroleinmanganeseinducedinflammationandapoptosisinmicroglia AT rizorasha lrrk2kinaseplaysacriticalroleinmanganeseinducedinflammationandapoptosisinmicroglia AT sondeoksoo lrrk2kinaseplaysacriticalroleinmanganeseinducedinflammationandapoptosisinmicroglia AT leejayden lrrk2kinaseplaysacriticalroleinmanganeseinducedinflammationandapoptosisinmicroglia AT aschnermichael lrrk2kinaseplaysacriticalroleinmanganeseinducedinflammationandapoptosisinmicroglia AT leeeunsook lrrk2kinaseplaysacriticalroleinmanganeseinducedinflammationandapoptosisinmicroglia |