Cargando…

Novel self-nanomicellizing solid dispersion based on rebaudioside A: a potential nanoplatform for oral delivery of curcumin

PURPOSE: Rebaudioside A (RA) has nanocarrier characteristics that allow it to self-assemble into micelles in aqueous solutions. The purpose of this study was to determine if a self-nanomicellizing solid dispersion based on RA could be utilized as an oral nano-drug delivery system. MATERIALS AND METH...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Yuzhen, Wang, Hui, Zhang, Fan, Sun, Fengyuan, Xin, Meng, Li, Mengshuang, Li, Jun, Wu, Xianggen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333391/
https://www.ncbi.nlm.nih.gov/pubmed/30666114
http://dx.doi.org/10.2147/IJN.S191337
Descripción
Sumario:PURPOSE: Rebaudioside A (RA) has nanocarrier characteristics that allow it to self-assemble into micelles in aqueous solutions. The purpose of this study was to determine if a self-nanomicellizing solid dispersion based on RA could be utilized as an oral nano-drug delivery system. MATERIALS AND METHODS: Curcumin (Cur) served as a model hydrophobic drug, and a Cur-loaded self-nanomicellizing solid dispersion based on RA (RA-Cur) was formulated. The properties of RA-Cur in the solid state and in aqueous solution were characterized. The antioxidant activity and mechanism of RA-Cur endocytosis were also investigated. The pharmacokinetics, biodistribution in the intestinal tract, and anti-inflammation properties were also evaluated in vivo. RESULTS: RA-Cur could be easily fabricated, and it self-assembled into ultrasmall micelles (particle size ~4 nm) in a homogeneous distribution state (polydispersity index <0.2) when dissolved in water. Cur was readily encapsulated into RA micelles and this improved its water solubility (to 14.34±1.66 mg/mL), as well as its in vitro release and membrane permeability. The antioxidant activities of Cur in RA-Cur were also significantly improved. Biodistribution in the intestinal tract confirmed a significant enhancement of Cur absorption in the duodenum, jejunum, and ileum by encapsulation in RA-Cur, and the absorption of RA-Cur was governed by mixed transcytosis mechanisms. Pharmacokinetic tests of RA-Cur in rats revealed a dramatic 19.06-fold enhancement of oral bioavailability when compared to free Cur. More importantly, oral administration of RA-Cur could efficiently ameliorate ulcerative colitis in a mouse model induced by dextran sodium sulfate. CONCLUSION: Self-nanomicellizing solid dispersions based on RA have great potential as novel oral nano-drug delivery systems for hydrophobic drugs such as Cur.