Cargando…
Effect of Formulation and Processing Parameters on the Size of mPEG-b-p(HPMA-Bz) Polymeric Micelles
[Image: see text] Micelles composed of block copolymers of poly(ethylene glycol)-b-poly(N-2-benzoyloxypropyl methacrylamide) (mPEG-b-p(HPMA-Bz)) have shown great promise as drug-delivery carriers due to their excellent stability and high loading capacity. In the present study, parameters influencing...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333397/ https://www.ncbi.nlm.nih.gov/pubmed/30415546 http://dx.doi.org/10.1021/acs.langmuir.8b03576 |
_version_ | 1783387557206163456 |
---|---|
author | Bagheri, Mahsa Bresseleers, Jaleesa Varela-Moreira, Aida Sandre, Olivier Meeuwissen, Silvie A. Schiffelers, Raymond M. Metselaar, Josbert M. van Nostrum, Cornelus F. van Hest, Jan C. M. Hennink, Wim E. |
author_facet | Bagheri, Mahsa Bresseleers, Jaleesa Varela-Moreira, Aida Sandre, Olivier Meeuwissen, Silvie A. Schiffelers, Raymond M. Metselaar, Josbert M. van Nostrum, Cornelus F. van Hest, Jan C. M. Hennink, Wim E. |
author_sort | Bagheri, Mahsa |
collection | PubMed |
description | [Image: see text] Micelles composed of block copolymers of poly(ethylene glycol)-b-poly(N-2-benzoyloxypropyl methacrylamide) (mPEG-b-p(HPMA-Bz)) have shown great promise as drug-delivery carriers due to their excellent stability and high loading capacity. In the present study, parameters influencing micelle size were investigated to tailor sizes in the range of 25–100 nm. Micelles were prepared by a nanoprecipitation method, and their size was modulated by the block copolymer properties such as molecular weight, their hydrophilic-to-hydrophobic ratio, homopolymer content, as well as formulation and processing parameters. It was shown that the micelles have a core–shell structure using a combination of dynamic light scattering and transmission electron microscopy analysis. By varying the degree of polymerization of the hydrophobic block (N(B)) between 68 and 10, at a fixed hydrophilic block mPEG(5k) (N(A) = 114), it was shown that the hydrophobic core of the micelle was collapsed following the power law of (N(B) × N(agg))(1/3). Further, the calculated brush height was similar for all the micelles examined (10 nm), indicating that crew-cut micelles were made. Both addition of homopolymer and preparation of micelles at lower concentrations or lower rates of addition of the organic solvent to the aqueous phase increased the size of micelles due to partitioning of the hydrophobic homopolymer chains to the core of the micelles and lower nucleation rates, respectively. Furthermore, it was shown that by using different solvents, the size of the micelles substantially changed. The use of acetone, acetonitrile, ethanol, tetrahydrofuran, and dioxane resulted in micelles in the size range of 45–60 nm after removal of the organic solvents. The use of dimethylformamide and dimethylsulfoxide led to markedly larger sizes of 75 and 180 nm, respectively. In conclusion, the results show that by modulating polymer properties and processing conditions, micelles with tailorable sizes can be obtained. |
format | Online Article Text |
id | pubmed-6333397 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-63333972019-01-17 Effect of Formulation and Processing Parameters on the Size of mPEG-b-p(HPMA-Bz) Polymeric Micelles Bagheri, Mahsa Bresseleers, Jaleesa Varela-Moreira, Aida Sandre, Olivier Meeuwissen, Silvie A. Schiffelers, Raymond M. Metselaar, Josbert M. van Nostrum, Cornelus F. van Hest, Jan C. M. Hennink, Wim E. Langmuir [Image: see text] Micelles composed of block copolymers of poly(ethylene glycol)-b-poly(N-2-benzoyloxypropyl methacrylamide) (mPEG-b-p(HPMA-Bz)) have shown great promise as drug-delivery carriers due to their excellent stability and high loading capacity. In the present study, parameters influencing micelle size were investigated to tailor sizes in the range of 25–100 nm. Micelles were prepared by a nanoprecipitation method, and their size was modulated by the block copolymer properties such as molecular weight, their hydrophilic-to-hydrophobic ratio, homopolymer content, as well as formulation and processing parameters. It was shown that the micelles have a core–shell structure using a combination of dynamic light scattering and transmission electron microscopy analysis. By varying the degree of polymerization of the hydrophobic block (N(B)) between 68 and 10, at a fixed hydrophilic block mPEG(5k) (N(A) = 114), it was shown that the hydrophobic core of the micelle was collapsed following the power law of (N(B) × N(agg))(1/3). Further, the calculated brush height was similar for all the micelles examined (10 nm), indicating that crew-cut micelles were made. Both addition of homopolymer and preparation of micelles at lower concentrations or lower rates of addition of the organic solvent to the aqueous phase increased the size of micelles due to partitioning of the hydrophobic homopolymer chains to the core of the micelles and lower nucleation rates, respectively. Furthermore, it was shown that by using different solvents, the size of the micelles substantially changed. The use of acetone, acetonitrile, ethanol, tetrahydrofuran, and dioxane resulted in micelles in the size range of 45–60 nm after removal of the organic solvents. The use of dimethylformamide and dimethylsulfoxide led to markedly larger sizes of 75 and 180 nm, respectively. In conclusion, the results show that by modulating polymer properties and processing conditions, micelles with tailorable sizes can be obtained. American Chemical Society 2018-11-12 2018-12-18 /pmc/articles/PMC6333397/ /pubmed/30415546 http://dx.doi.org/10.1021/acs.langmuir.8b03576 Text en Copyright © 2018 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Bagheri, Mahsa Bresseleers, Jaleesa Varela-Moreira, Aida Sandre, Olivier Meeuwissen, Silvie A. Schiffelers, Raymond M. Metselaar, Josbert M. van Nostrum, Cornelus F. van Hest, Jan C. M. Hennink, Wim E. Effect of Formulation and Processing Parameters on the Size of mPEG-b-p(HPMA-Bz) Polymeric Micelles |
title | Effect of Formulation and Processing Parameters on
the Size of mPEG-b-p(HPMA-Bz) Polymeric
Micelles |
title_full | Effect of Formulation and Processing Parameters on
the Size of mPEG-b-p(HPMA-Bz) Polymeric
Micelles |
title_fullStr | Effect of Formulation and Processing Parameters on
the Size of mPEG-b-p(HPMA-Bz) Polymeric
Micelles |
title_full_unstemmed | Effect of Formulation and Processing Parameters on
the Size of mPEG-b-p(HPMA-Bz) Polymeric
Micelles |
title_short | Effect of Formulation and Processing Parameters on
the Size of mPEG-b-p(HPMA-Bz) Polymeric
Micelles |
title_sort | effect of formulation and processing parameters on
the size of mpeg-b-p(hpma-bz) polymeric
micelles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333397/ https://www.ncbi.nlm.nih.gov/pubmed/30415546 http://dx.doi.org/10.1021/acs.langmuir.8b03576 |
work_keys_str_mv | AT bagherimahsa effectofformulationandprocessingparametersonthesizeofmpegbphpmabzpolymericmicelles AT bresseleersjaleesa effectofformulationandprocessingparametersonthesizeofmpegbphpmabzpolymericmicelles AT varelamoreiraaida effectofformulationandprocessingparametersonthesizeofmpegbphpmabzpolymericmicelles AT sandreolivier effectofformulationandprocessingparametersonthesizeofmpegbphpmabzpolymericmicelles AT meeuwissensilviea effectofformulationandprocessingparametersonthesizeofmpegbphpmabzpolymericmicelles AT schiffelersraymondm effectofformulationandprocessingparametersonthesizeofmpegbphpmabzpolymericmicelles AT metselaarjosbertm effectofformulationandprocessingparametersonthesizeofmpegbphpmabzpolymericmicelles AT vannostrumcornelusf effectofformulationandprocessingparametersonthesizeofmpegbphpmabzpolymericmicelles AT vanhestjancm effectofformulationandprocessingparametersonthesizeofmpegbphpmabzpolymericmicelles AT henninkwime effectofformulationandprocessingparametersonthesizeofmpegbphpmabzpolymericmicelles |