Cargando…
Response of Soil Fungal Community Structure to Long-Term Continuous Soybean Cropping
Long-term continuous soybean cropping can lead to the aggravation of soil fungal disease. However, the manner in which the fungal community and functional groups of fungi are affected by continuous soybean cropping remains unclear. We investigated the fungal abundance, composition and diversity duri...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333693/ https://www.ncbi.nlm.nih.gov/pubmed/30687292 http://dx.doi.org/10.3389/fmicb.2018.03316 |
_version_ | 1783387600403300352 |
---|---|
author | Liu, Hang Pan, Fengjuan Han, Xiaozeng Song, Fengbin Zhang, Zhiming Yan, Jun Xu, Yanli |
author_facet | Liu, Hang Pan, Fengjuan Han, Xiaozeng Song, Fengbin Zhang, Zhiming Yan, Jun Xu, Yanli |
author_sort | Liu, Hang |
collection | PubMed |
description | Long-term continuous soybean cropping can lead to the aggravation of soil fungal disease. However, the manner in which the fungal community and functional groups of fungi are affected by continuous soybean cropping remains unclear. We investigated the fungal abundance, composition and diversity during soybean rotation (RS), 2-year (SS) and long-term (CS) continuous soybean cropping systems using quantitative real-time PCR and high-throughput sequencing. The results showed that the fungal abundance was significantly higher in CS than in SS and RS. CS altered the fungal composition. Compared with RS, SS had an increase of 29 and a decrease of 12 genera in fungal relative abundance, and CS increased 38 and decreased 17 genera. The Shannon index was significantly higher in CS and SS than in RS. The result of principal coordinate analysis (PCoA) showed that CS and SS grouped together and were clearly separated from RS on the PCoA1. A total of 32 features accounted for the differences in fungal composition across RS, SS, and CS. The relative abundance of 10 potentially pathogenic and 10 potentially beneficial fungi changed, and most of their relative abundances dramatically increased in SS and CS compared with RS. Our study indicated that CS results in selective stress on pathogenic and beneficial fungi and causes the development of the fungal community structure that is antagonistic to plant health. |
format | Online Article Text |
id | pubmed-6333693 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63336932019-01-25 Response of Soil Fungal Community Structure to Long-Term Continuous Soybean Cropping Liu, Hang Pan, Fengjuan Han, Xiaozeng Song, Fengbin Zhang, Zhiming Yan, Jun Xu, Yanli Front Microbiol Microbiology Long-term continuous soybean cropping can lead to the aggravation of soil fungal disease. However, the manner in which the fungal community and functional groups of fungi are affected by continuous soybean cropping remains unclear. We investigated the fungal abundance, composition and diversity during soybean rotation (RS), 2-year (SS) and long-term (CS) continuous soybean cropping systems using quantitative real-time PCR and high-throughput sequencing. The results showed that the fungal abundance was significantly higher in CS than in SS and RS. CS altered the fungal composition. Compared with RS, SS had an increase of 29 and a decrease of 12 genera in fungal relative abundance, and CS increased 38 and decreased 17 genera. The Shannon index was significantly higher in CS and SS than in RS. The result of principal coordinate analysis (PCoA) showed that CS and SS grouped together and were clearly separated from RS on the PCoA1. A total of 32 features accounted for the differences in fungal composition across RS, SS, and CS. The relative abundance of 10 potentially pathogenic and 10 potentially beneficial fungi changed, and most of their relative abundances dramatically increased in SS and CS compared with RS. Our study indicated that CS results in selective stress on pathogenic and beneficial fungi and causes the development of the fungal community structure that is antagonistic to plant health. Frontiers Media S.A. 2019-01-09 /pmc/articles/PMC6333693/ /pubmed/30687292 http://dx.doi.org/10.3389/fmicb.2018.03316 Text en Copyright © 2019 Liu, Pan, Han, Song, Zhang, Yan and Xu. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Liu, Hang Pan, Fengjuan Han, Xiaozeng Song, Fengbin Zhang, Zhiming Yan, Jun Xu, Yanli Response of Soil Fungal Community Structure to Long-Term Continuous Soybean Cropping |
title | Response of Soil Fungal Community Structure to Long-Term Continuous Soybean Cropping |
title_full | Response of Soil Fungal Community Structure to Long-Term Continuous Soybean Cropping |
title_fullStr | Response of Soil Fungal Community Structure to Long-Term Continuous Soybean Cropping |
title_full_unstemmed | Response of Soil Fungal Community Structure to Long-Term Continuous Soybean Cropping |
title_short | Response of Soil Fungal Community Structure to Long-Term Continuous Soybean Cropping |
title_sort | response of soil fungal community structure to long-term continuous soybean cropping |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333693/ https://www.ncbi.nlm.nih.gov/pubmed/30687292 http://dx.doi.org/10.3389/fmicb.2018.03316 |
work_keys_str_mv | AT liuhang responseofsoilfungalcommunitystructuretolongtermcontinuoussoybeancropping AT panfengjuan responseofsoilfungalcommunitystructuretolongtermcontinuoussoybeancropping AT hanxiaozeng responseofsoilfungalcommunitystructuretolongtermcontinuoussoybeancropping AT songfengbin responseofsoilfungalcommunitystructuretolongtermcontinuoussoybeancropping AT zhangzhiming responseofsoilfungalcommunitystructuretolongtermcontinuoussoybeancropping AT yanjun responseofsoilfungalcommunitystructuretolongtermcontinuoussoybeancropping AT xuyanli responseofsoilfungalcommunitystructuretolongtermcontinuoussoybeancropping |