Cargando…
Bio-inspired Analysis of Deep Learning on Not-So-Big Data Using Data-Prototypes
Deep artificial neural networks are feed-forward architectures capable of very impressive performances in diverse domains. Indeed stacking multiple layers allows a hierarchical composition of local functions, providing efficient compact mappings. Compared to the brain, however, such architectures ar...
Autores principales: | Drumond, Thalita F., Viéville, Thierry, Alexandre, Frédéric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333865/ https://www.ncbi.nlm.nih.gov/pubmed/30687053 http://dx.doi.org/10.3389/fncom.2018.00100 |
Ejemplares similares
-
Automatic Analysis of EEGs Using Big Data and Hybrid Deep Learning Architectures
por: Golmohammadi, Meysam, et al.
Publicado: (2019) -
Bio-inspired computation for big data fusion, storage, processing, learning and visualization: state of the art and future directions
por: Torre-Bastida, Ana I., et al.
Publicado: (2021) -
A Deep Non-negative Matrix Factorization Model for Big Data Representation Learning
por: Chen, Zhikui, et al.
Publicado: (2021) -
Bio-Inspired Techniques in a Fully Digital Approach for Lifelong Learning
por: Bianchi, Stefano, et al.
Publicado: (2020) -
Adaptive Locomotion Control of a Hexapod Robot via Bio-Inspired Learning
por: Ouyang, Wenjuan, et al.
Publicado: (2021)