Cargando…

Reproducibility of intravoxel incoherent motion of liver on a 3.0T scanner: free-breathing and respiratory-triggered sequences acquired with different numbers of excitations

PURPOSE: To optimise the intravoxel incoherent motion (IVIM) imaging of the liver on a 3.0T scanner by assessing parameter reproducibility on free-breathing (FB) and respiratory-triggered (RT) sequences acquired with different numbers of signal averages (NSA). MATERIAL AND METHODS: In this prospecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Cieszanowski, Andrzej, Pasicz, Katarzyna, Podgórska, Joanna, Fabiszewska, Ewa, Skrzyński, Witold, Jasieniak, Jakub, Anysz-Grodzicka, Agnieszka, Grabska, Iwona, Pałucki, Jakub, Naduk-Ostrowska, Martyna, Jagielska, Beata, Kukołowicz, Paweł
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Termedia Publishing House 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334093/
https://www.ncbi.nlm.nih.gov/pubmed/30655921
http://dx.doi.org/10.5114/pjr.2018.79651
Descripción
Sumario:PURPOSE: To optimise the intravoxel incoherent motion (IVIM) imaging of the liver on a 3.0T scanner by assessing parameter reproducibility on free-breathing (FB) and respiratory-triggered (RT) sequences acquired with different numbers of signal averages (NSA). MATERIAL AND METHODS: In this prospective study 20 subjects (M/F: 10/10; age: 25-62 years, mean: 39 years) underwent IVIM magnetic resonance imaging (MRI) on a 3.0T scanner using an 18-channel phase-arrayed coil and four different echo-planar sequences, each with 10 b values: 0, 10, 30, 50, 75, 100, 150, 200, 500, and 900 s/mm(2). Images were acquired with FB and RT with NSA = 1-4 (FBNSA1-4, RTNSA1-4) and with NSA = 3-6 (FBNSA3-6, RTNSA3-6). Subsequently, for the assessment of reproducibility of IVIM-derived parameters (f, D, D*), each subject was scanned again with an identical protocol during the same session. IVIM parameters were calculated. The distribution of IVIM-parameters for each DWI sequence were given as the median value with first and third quartile. Inter-scan reproducibility for each IVIM parameter was evaluated using coefficient of variance and Bland-Altman difference. Differences between FB sequence and RT sequence were tested using non-parametric Wilcoxon signed-rank test. RESULTS: Mean coefficient of variance (%) for f, D, and D* ranged from 60 to 64, from 58 to 84, and from 82 to 99 for FBNSA1-4 sequence; from 50 to 69, from 41 to 97, and from 80 to 82 for RTNSA1-4 sequence; from 22 to 27, 15, and from 70 to 80 for FBNSA3-6 sequence; and from 21 to 32, from 12 to, and from 50 to 80 for RTNSA3-6 sequence, respectively. CONCLUSIONS: Increasing the number of signal averages for IVIM acquisitions allows us to improve the reproducibility of IVIM-derived parameters. The sequence acquired during free-breathing with NSA = 3-6 was optimal in terms of reproducibility and acquisition time.