Cargando…
Rethinking multiscale cardiac electrophysiology with machine learning and predictive modelling
We review some of the latest approaches to analysing cardiac electrophysiology data using machine learning and predictive modelling. Cardiac arrhythmias, particularly atrial fibrillation, are a major global healthcare challenge. Treatment is often through catheter ablation, which involves the target...
Autores principales: | Cantwell, Chris D., Mohamied, Yumnah, Tzortzis, Konstantinos N., Garasto, Stef, Houston, Charles, Chowdhury, Rasheda A., Ng, Fu Siong, Bharath, Anil A., Peters, Nicholas S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334203/ https://www.ncbi.nlm.nih.gov/pubmed/30442428 http://dx.doi.org/10.1016/j.compbiomed.2018.10.015 |
Ejemplares similares
-
Concurrent micro- to macro-cardiac electrophysiology in myocyte cultures and human heart slices
por: Chowdhury, Rasheda A., et al.
Publicado: (2018) -
Characterisation of re-entrant circuit (or rotational activity) in vitro using the HL1-6 myocyte cell line
por: Houston, Charles, et al.
Publicado: (2018) -
Development of a pro-arrhythmic ex vivo intact human and porcine model: cardiac electrophysiological changes associated with cellular uncoupling
por: Brook, Joseph, et al.
Publicado: (2020) -
EP-PINNs: Cardiac Electrophysiology Characterisation Using Physics-Informed Neural Networks
por: Herrero Martin, Clara, et al.
Publicado: (2022) -
The Role of Tricellular Junctions in the Transport of Macromolecules Across Endothelium
por: Ghim, Mean, et al.
Publicado: (2020)