Cargando…
Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks
Lung cancer is a leading cause of death worldwide. Although computed tomography (CT) examinations are frequently used for lung cancer diagnosis, it can be difficult to distinguish between benign and malignant pulmonary nodules on the basis of CT images alone. Therefore, a bronchoscopic biopsy may be...
Autores principales: | Onishi, Yuya, Teramoto, Atsushi, Tsujimoto, Masakazu, Tsukamoto, Tetsuya, Saito, Kuniaki, Toyama, Hiroshi, Imaizumi, Kazuyoshi, Fujita, Hiroshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334309/ https://www.ncbi.nlm.nih.gov/pubmed/30719445 http://dx.doi.org/10.1155/2019/6051939 |
Ejemplares similares
-
Automated Classification of Idiopathic Pulmonary Fibrosis in Pathological Images Using Convolutional Neural Network and Generative Adversarial Networks
por: Teramoto, Atsushi, et al.
Publicado: (2022) -
Automated Classification of Pulmonary Nodules through a Retrospective Analysis of Conventional CT and Two-phase PET Images in Patients Undergoing Biopsy
por: Teramoto, Atsushi, et al.
Publicado: (2019) -
Deep learning approach to classification of lung cytological images: Two-step training using actual and synthesized images by progressive growing of generative adversarial networks
por: Teramoto, Atsushi, et al.
Publicado: (2020) -
Mutual stain conversion between Giemsa and Papanicolaou in cytological images using cycle generative adversarial network
por: Teramoto, Atsushi, et al.
Publicado: (2021) -
Comparison of Fine-Tuned Deep Convolutional Neural Networks for the Automated Classification of Lung Cancer Cytology Images with Integration of Additional Classifiers
por: Tsukamoto, Tetsuya, et al.
Publicado: (2022)