Cargando…
Severe Eosinophilia in Myelodysplastic Syndrome With a Defined and Rare Cytogenetic Abnormality
Myelodysplastic syndromes (MDS) are a heterogeneous group clonal disorders of hematopoietic stem cells (HSC) characterized by ineffective hematopoiesis that lead to variable grades of impaired blood cell production. Chromosomal aberrations are often detected in MDS patients and thus cytogenetic anal...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334338/ https://www.ncbi.nlm.nih.gov/pubmed/30687305 http://dx.doi.org/10.3389/fimmu.2018.03031 |
Sumario: | Myelodysplastic syndromes (MDS) are a heterogeneous group clonal disorders of hematopoietic stem cells (HSC) characterized by ineffective hematopoiesis that lead to variable grades of impaired blood cell production. Chromosomal aberrations are often detected in MDS patients and thus cytogenetic analysis is useful for the diagnosis of these disorders. Common recurring chromosomal defects, such as the −5/5q- and −7/7q- are relatively well characterized cytogenetic abnormalities in MDS, however, the biological significance of uncommon cytogenetic alterations is unknown. We report here, two cases of peripheral blood and bone marrow hypereosinophilia in patients with MDS harboring the unbalanced translocation der(1;7)(q10;p10), a poorly characterized cytogenetic abnormality that is found in certain myeloid malignancies, including MDS. The patients reported here presented hypereosinophilia that was refractory to steroids and cytotoxic therapy, leading to severe target tissue damage that ultimately resulted in fatal end-organ failure. Potential roles of the der(1;7)(q10;p10) aberrations in the pathogenesis of aggressive eosinophilia and disease prognosis are discussed here. |
---|