Cargando…
Eco-Efficient Biosorbent Based on Leucaena leucocephala Residues for the Simultaneous Removal of Pb(II) and Cd(II) Ions from Water System: Sorption and Mechanism
Leucaena leucocephala is a potential source of polyphenols widely available in southern Mexico. This work highlights the extraction of polyphenols from Leucaena leucocephala leaves waste (LLEPs) and the evaluation of their efficiency to remove the single and multicomponent Pb(II) and Cd(II) metal io...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334343/ https://www.ncbi.nlm.nih.gov/pubmed/30719034 http://dx.doi.org/10.1155/2019/2814047 |
_version_ | 1783387692361318400 |
---|---|
author | Cimá-Mukul, C. A. Abdellaoui, Youness Abatal, Mohamed Vargas, Joel Santiago, Arlette A. Barrón-Zambrano, Jesús Alberto |
author_facet | Cimá-Mukul, C. A. Abdellaoui, Youness Abatal, Mohamed Vargas, Joel Santiago, Arlette A. Barrón-Zambrano, Jesús Alberto |
author_sort | Cimá-Mukul, C. A. |
collection | PubMed |
description | Leucaena leucocephala is a potential source of polyphenols widely available in southern Mexico. This work highlights the extraction of polyphenols from Leucaena leucocephala leaves waste (LLEPs) and the evaluation of their efficiency to remove the single and multicomponent Pb(II) and Cd(II) metal ions from aqueous solutions. Batch test conditions were carried out to examine the effects of contact time, initial metal ion concentration, and adsorbent dosage on the biosorption process. The surface textures and the composition of the LLEP biosorbent was characterized using pH of point of zero charge (pH(PZC)), attenuated total reflectance Fourier transform infrared (ATR-FTIR), and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry, respectively. Further analysis using ATR-FTIR after adsorption contact of biosorbent was also investigated. The highest Langmuir saturation monolayer adsorption capacity, q(m), for the removal of Pb(II) by LLEPs was obtained as 25.51 and 21.55 mg/g in mono- and bimetal solutions, respectively. The pseudo-second-order model provided the best fit for the kinetic data obtained for the removal of Pb(II), Cd(II), and their mixture, and the k(2) values depend on the adsorbent mass. This implied that the chemisorption process might be the mechanism of the solute ions-LLEPs interaction in this study. Furthermore, nearly 100% removal of lead and cadmium individually and 95% of their mixture was found using 0.9 g of LLEPs. |
format | Online Article Text |
id | pubmed-6334343 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-63343432019-02-04 Eco-Efficient Biosorbent Based on Leucaena leucocephala Residues for the Simultaneous Removal of Pb(II) and Cd(II) Ions from Water System: Sorption and Mechanism Cimá-Mukul, C. A. Abdellaoui, Youness Abatal, Mohamed Vargas, Joel Santiago, Arlette A. Barrón-Zambrano, Jesús Alberto Bioinorg Chem Appl Research Article Leucaena leucocephala is a potential source of polyphenols widely available in southern Mexico. This work highlights the extraction of polyphenols from Leucaena leucocephala leaves waste (LLEPs) and the evaluation of their efficiency to remove the single and multicomponent Pb(II) and Cd(II) metal ions from aqueous solutions. Batch test conditions were carried out to examine the effects of contact time, initial metal ion concentration, and adsorbent dosage on the biosorption process. The surface textures and the composition of the LLEP biosorbent was characterized using pH of point of zero charge (pH(PZC)), attenuated total reflectance Fourier transform infrared (ATR-FTIR), and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry, respectively. Further analysis using ATR-FTIR after adsorption contact of biosorbent was also investigated. The highest Langmuir saturation monolayer adsorption capacity, q(m), for the removal of Pb(II) by LLEPs was obtained as 25.51 and 21.55 mg/g in mono- and bimetal solutions, respectively. The pseudo-second-order model provided the best fit for the kinetic data obtained for the removal of Pb(II), Cd(II), and their mixture, and the k(2) values depend on the adsorbent mass. This implied that the chemisorption process might be the mechanism of the solute ions-LLEPs interaction in this study. Furthermore, nearly 100% removal of lead and cadmium individually and 95% of their mixture was found using 0.9 g of LLEPs. Hindawi 2019-01-02 /pmc/articles/PMC6334343/ /pubmed/30719034 http://dx.doi.org/10.1155/2019/2814047 Text en Copyright © 2019 C. A. Cimá-Mukul et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Cimá-Mukul, C. A. Abdellaoui, Youness Abatal, Mohamed Vargas, Joel Santiago, Arlette A. Barrón-Zambrano, Jesús Alberto Eco-Efficient Biosorbent Based on Leucaena leucocephala Residues for the Simultaneous Removal of Pb(II) and Cd(II) Ions from Water System: Sorption and Mechanism |
title | Eco-Efficient Biosorbent Based on Leucaena leucocephala Residues for the Simultaneous Removal of Pb(II) and Cd(II) Ions from Water System: Sorption and Mechanism |
title_full | Eco-Efficient Biosorbent Based on Leucaena leucocephala Residues for the Simultaneous Removal of Pb(II) and Cd(II) Ions from Water System: Sorption and Mechanism |
title_fullStr | Eco-Efficient Biosorbent Based on Leucaena leucocephala Residues for the Simultaneous Removal of Pb(II) and Cd(II) Ions from Water System: Sorption and Mechanism |
title_full_unstemmed | Eco-Efficient Biosorbent Based on Leucaena leucocephala Residues for the Simultaneous Removal of Pb(II) and Cd(II) Ions from Water System: Sorption and Mechanism |
title_short | Eco-Efficient Biosorbent Based on Leucaena leucocephala Residues for the Simultaneous Removal of Pb(II) and Cd(II) Ions from Water System: Sorption and Mechanism |
title_sort | eco-efficient biosorbent based on leucaena leucocephala residues for the simultaneous removal of pb(ii) and cd(ii) ions from water system: sorption and mechanism |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334343/ https://www.ncbi.nlm.nih.gov/pubmed/30719034 http://dx.doi.org/10.1155/2019/2814047 |
work_keys_str_mv | AT cimamukulca ecoefficientbiosorbentbasedonleucaenaleucocephalaresiduesforthesimultaneousremovalofpbiiandcdiiionsfromwatersystemsorptionandmechanism AT abdellaouiyouness ecoefficientbiosorbentbasedonleucaenaleucocephalaresiduesforthesimultaneousremovalofpbiiandcdiiionsfromwatersystemsorptionandmechanism AT abatalmohamed ecoefficientbiosorbentbasedonleucaenaleucocephalaresiduesforthesimultaneousremovalofpbiiandcdiiionsfromwatersystemsorptionandmechanism AT vargasjoel ecoefficientbiosorbentbasedonleucaenaleucocephalaresiduesforthesimultaneousremovalofpbiiandcdiiionsfromwatersystemsorptionandmechanism AT santiagoarlettea ecoefficientbiosorbentbasedonleucaenaleucocephalaresiduesforthesimultaneousremovalofpbiiandcdiiionsfromwatersystemsorptionandmechanism AT barronzambranojesusalberto ecoefficientbiosorbentbasedonleucaenaleucocephalaresiduesforthesimultaneousremovalofpbiiandcdiiionsfromwatersystemsorptionandmechanism |