Cargando…
Machine learning algorithms for systematic review: reducing workload in a preclinical review of animal studies and reducing human screening error
BACKGROUND: Here, we outline a method of applying existing machine learning (ML) approaches to aid citation screening in an on-going broad and shallow systematic review of preclinical animal studies. The aim is to achieve a high-performing algorithm comparable to human screening that can reduce huma...
Autores principales: | Bannach-Brown, Alexandra, Przybyła, Piotr, Thomas, James, Rice, Andrew S. C., Ananiadou, Sophia, Liao, Jing, Macleod, Malcolm Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334440/ https://www.ncbi.nlm.nih.gov/pubmed/30646959 http://dx.doi.org/10.1186/s13643-019-0942-7 |
Ejemplares similares
-
Reducing systematic review workload through certainty-based screening
por: Miwa, Makoto, et al.
Publicado: (2014) -
Machine learning reduced workload for the Cochrane COVID-19 Study Register: development and evaluation of the Cochrane COVID-19 Study Classifier
por: Shemilt, Ian, et al.
Publicado: (2022) -
Supporting systematic reviews using LDA-based document representations
por: Mo, Yuanhan, et al.
Publicado: (2015) -
Risk of bias reporting in the recent animal focal cerebral ischaemia literature
por: Bahor, Zsanett, et al.
Publicado: (2017) -
Technological advances in preclinical meta-research
por: Bannach-Brown, Alexandra, et al.
Publicado: (2021)