Cargando…

Formation of functional, non‐amyloidogenic fibres by recombinant Bacillus subtilis TasA

Bacterial biofilms are communities of microbial cells encased within a self‐produced polymeric matrix. In the Bacillus subtilis biofilm matrix, the extracellular fibres of TasA are essential. Here, a recombinant expression system allows interrogation of TasA, revealing that monomeric and fibre forms...

Descripción completa

Detalles Bibliográficos
Autores principales: Erskine, Elliot, Morris, Ryan J., Schor, Marieke, Earl, Chris, Gillespie, Rachel M. C., Bromley, Keith M., Sukhodub, Tetyana, Clark, Lauren, Fyfe, Paul K., Serpell, Louise C., Stanley‐Wall, Nicola R., MacPhee, Cait E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334530/
https://www.ncbi.nlm.nih.gov/pubmed/29802781
http://dx.doi.org/10.1111/mmi.13985
_version_ 1783387736389976064
author Erskine, Elliot
Morris, Ryan J.
Schor, Marieke
Earl, Chris
Gillespie, Rachel M. C.
Bromley, Keith M.
Sukhodub, Tetyana
Clark, Lauren
Fyfe, Paul K.
Serpell, Louise C.
Stanley‐Wall, Nicola R.
MacPhee, Cait E.
author_facet Erskine, Elliot
Morris, Ryan J.
Schor, Marieke
Earl, Chris
Gillespie, Rachel M. C.
Bromley, Keith M.
Sukhodub, Tetyana
Clark, Lauren
Fyfe, Paul K.
Serpell, Louise C.
Stanley‐Wall, Nicola R.
MacPhee, Cait E.
author_sort Erskine, Elliot
collection PubMed
description Bacterial biofilms are communities of microbial cells encased within a self‐produced polymeric matrix. In the Bacillus subtilis biofilm matrix, the extracellular fibres of TasA are essential. Here, a recombinant expression system allows interrogation of TasA, revealing that monomeric and fibre forms of TasA have identical secondary structure, suggesting that fibrous TasA is a linear assembly of globular units. Recombinant TasA fibres form spontaneously, and share the biological activity of TasA fibres extracted from B. subtilis, whereas a TasA variant restricted to a monomeric form is inactive and subjected to extracellular proteolysis. The biophysical properties of both native and recombinant TasA fibres indicate that they are not functional amyloid‐like fibres. A gel formed by TasA fibres can recover after physical shear force, suggesting that the biofilm matrix is not static and that these properties may enable B. subtilis to remodel its local environment in response to external cues. Using recombinant fibres formed by TasA orthologues we uncover species variability in the ability of heterologous fibres to cross‐complement the B. subtilis tasA deletion. These findings are indicative of specificity in the biophysical requirements of the TasA fibres across different species and/or reflect the precise molecular interactions needed for biofilm matrix assembly.
format Online
Article
Text
id pubmed-6334530
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-63345302019-01-23 Formation of functional, non‐amyloidogenic fibres by recombinant Bacillus subtilis TasA Erskine, Elliot Morris, Ryan J. Schor, Marieke Earl, Chris Gillespie, Rachel M. C. Bromley, Keith M. Sukhodub, Tetyana Clark, Lauren Fyfe, Paul K. Serpell, Louise C. Stanley‐Wall, Nicola R. MacPhee, Cait E. Mol Microbiol Research Articles Bacterial biofilms are communities of microbial cells encased within a self‐produced polymeric matrix. In the Bacillus subtilis biofilm matrix, the extracellular fibres of TasA are essential. Here, a recombinant expression system allows interrogation of TasA, revealing that monomeric and fibre forms of TasA have identical secondary structure, suggesting that fibrous TasA is a linear assembly of globular units. Recombinant TasA fibres form spontaneously, and share the biological activity of TasA fibres extracted from B. subtilis, whereas a TasA variant restricted to a monomeric form is inactive and subjected to extracellular proteolysis. The biophysical properties of both native and recombinant TasA fibres indicate that they are not functional amyloid‐like fibres. A gel formed by TasA fibres can recover after physical shear force, suggesting that the biofilm matrix is not static and that these properties may enable B. subtilis to remodel its local environment in response to external cues. Using recombinant fibres formed by TasA orthologues we uncover species variability in the ability of heterologous fibres to cross‐complement the B. subtilis tasA deletion. These findings are indicative of specificity in the biophysical requirements of the TasA fibres across different species and/or reflect the precise molecular interactions needed for biofilm matrix assembly. John Wiley and Sons Inc. 2018-11-16 2018-12 /pmc/articles/PMC6334530/ /pubmed/29802781 http://dx.doi.org/10.1111/mmi.13985 Text en © 2018 The Authors Molecular Microbiology Published by John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Erskine, Elliot
Morris, Ryan J.
Schor, Marieke
Earl, Chris
Gillespie, Rachel M. C.
Bromley, Keith M.
Sukhodub, Tetyana
Clark, Lauren
Fyfe, Paul K.
Serpell, Louise C.
Stanley‐Wall, Nicola R.
MacPhee, Cait E.
Formation of functional, non‐amyloidogenic fibres by recombinant Bacillus subtilis TasA
title Formation of functional, non‐amyloidogenic fibres by recombinant Bacillus subtilis TasA
title_full Formation of functional, non‐amyloidogenic fibres by recombinant Bacillus subtilis TasA
title_fullStr Formation of functional, non‐amyloidogenic fibres by recombinant Bacillus subtilis TasA
title_full_unstemmed Formation of functional, non‐amyloidogenic fibres by recombinant Bacillus subtilis TasA
title_short Formation of functional, non‐amyloidogenic fibres by recombinant Bacillus subtilis TasA
title_sort formation of functional, non‐amyloidogenic fibres by recombinant bacillus subtilis tasa
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334530/
https://www.ncbi.nlm.nih.gov/pubmed/29802781
http://dx.doi.org/10.1111/mmi.13985
work_keys_str_mv AT erskineelliot formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa
AT morrisryanj formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa
AT schormarieke formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa
AT earlchris formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa
AT gillespierachelmc formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa
AT bromleykeithm formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa
AT sukhodubtetyana formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa
AT clarklauren formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa
AT fyfepaulk formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa
AT serpelllouisec formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa
AT stanleywallnicolar formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa
AT macpheecaite formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa