Cargando…
Formation of functional, non‐amyloidogenic fibres by recombinant Bacillus subtilis TasA
Bacterial biofilms are communities of microbial cells encased within a self‐produced polymeric matrix. In the Bacillus subtilis biofilm matrix, the extracellular fibres of TasA are essential. Here, a recombinant expression system allows interrogation of TasA, revealing that monomeric and fibre forms...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334530/ https://www.ncbi.nlm.nih.gov/pubmed/29802781 http://dx.doi.org/10.1111/mmi.13985 |
_version_ | 1783387736389976064 |
---|---|
author | Erskine, Elliot Morris, Ryan J. Schor, Marieke Earl, Chris Gillespie, Rachel M. C. Bromley, Keith M. Sukhodub, Tetyana Clark, Lauren Fyfe, Paul K. Serpell, Louise C. Stanley‐Wall, Nicola R. MacPhee, Cait E. |
author_facet | Erskine, Elliot Morris, Ryan J. Schor, Marieke Earl, Chris Gillespie, Rachel M. C. Bromley, Keith M. Sukhodub, Tetyana Clark, Lauren Fyfe, Paul K. Serpell, Louise C. Stanley‐Wall, Nicola R. MacPhee, Cait E. |
author_sort | Erskine, Elliot |
collection | PubMed |
description | Bacterial biofilms are communities of microbial cells encased within a self‐produced polymeric matrix. In the Bacillus subtilis biofilm matrix, the extracellular fibres of TasA are essential. Here, a recombinant expression system allows interrogation of TasA, revealing that monomeric and fibre forms of TasA have identical secondary structure, suggesting that fibrous TasA is a linear assembly of globular units. Recombinant TasA fibres form spontaneously, and share the biological activity of TasA fibres extracted from B. subtilis, whereas a TasA variant restricted to a monomeric form is inactive and subjected to extracellular proteolysis. The biophysical properties of both native and recombinant TasA fibres indicate that they are not functional amyloid‐like fibres. A gel formed by TasA fibres can recover after physical shear force, suggesting that the biofilm matrix is not static and that these properties may enable B. subtilis to remodel its local environment in response to external cues. Using recombinant fibres formed by TasA orthologues we uncover species variability in the ability of heterologous fibres to cross‐complement the B. subtilis tasA deletion. These findings are indicative of specificity in the biophysical requirements of the TasA fibres across different species and/or reflect the precise molecular interactions needed for biofilm matrix assembly. |
format | Online Article Text |
id | pubmed-6334530 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63345302019-01-23 Formation of functional, non‐amyloidogenic fibres by recombinant Bacillus subtilis TasA Erskine, Elliot Morris, Ryan J. Schor, Marieke Earl, Chris Gillespie, Rachel M. C. Bromley, Keith M. Sukhodub, Tetyana Clark, Lauren Fyfe, Paul K. Serpell, Louise C. Stanley‐Wall, Nicola R. MacPhee, Cait E. Mol Microbiol Research Articles Bacterial biofilms are communities of microbial cells encased within a self‐produced polymeric matrix. In the Bacillus subtilis biofilm matrix, the extracellular fibres of TasA are essential. Here, a recombinant expression system allows interrogation of TasA, revealing that monomeric and fibre forms of TasA have identical secondary structure, suggesting that fibrous TasA is a linear assembly of globular units. Recombinant TasA fibres form spontaneously, and share the biological activity of TasA fibres extracted from B. subtilis, whereas a TasA variant restricted to a monomeric form is inactive and subjected to extracellular proteolysis. The biophysical properties of both native and recombinant TasA fibres indicate that they are not functional amyloid‐like fibres. A gel formed by TasA fibres can recover after physical shear force, suggesting that the biofilm matrix is not static and that these properties may enable B. subtilis to remodel its local environment in response to external cues. Using recombinant fibres formed by TasA orthologues we uncover species variability in the ability of heterologous fibres to cross‐complement the B. subtilis tasA deletion. These findings are indicative of specificity in the biophysical requirements of the TasA fibres across different species and/or reflect the precise molecular interactions needed for biofilm matrix assembly. John Wiley and Sons Inc. 2018-11-16 2018-12 /pmc/articles/PMC6334530/ /pubmed/29802781 http://dx.doi.org/10.1111/mmi.13985 Text en © 2018 The Authors Molecular Microbiology Published by John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Erskine, Elliot Morris, Ryan J. Schor, Marieke Earl, Chris Gillespie, Rachel M. C. Bromley, Keith M. Sukhodub, Tetyana Clark, Lauren Fyfe, Paul K. Serpell, Louise C. Stanley‐Wall, Nicola R. MacPhee, Cait E. Formation of functional, non‐amyloidogenic fibres by recombinant Bacillus subtilis TasA |
title | Formation of functional, non‐amyloidogenic fibres by recombinant Bacillus subtilis TasA |
title_full | Formation of functional, non‐amyloidogenic fibres by recombinant Bacillus subtilis TasA |
title_fullStr | Formation of functional, non‐amyloidogenic fibres by recombinant Bacillus subtilis TasA |
title_full_unstemmed | Formation of functional, non‐amyloidogenic fibres by recombinant Bacillus subtilis TasA |
title_short | Formation of functional, non‐amyloidogenic fibres by recombinant Bacillus subtilis TasA |
title_sort | formation of functional, non‐amyloidogenic fibres by recombinant bacillus subtilis tasa |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334530/ https://www.ncbi.nlm.nih.gov/pubmed/29802781 http://dx.doi.org/10.1111/mmi.13985 |
work_keys_str_mv | AT erskineelliot formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa AT morrisryanj formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa AT schormarieke formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa AT earlchris formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa AT gillespierachelmc formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa AT bromleykeithm formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa AT sukhodubtetyana formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa AT clarklauren formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa AT fyfepaulk formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa AT serpelllouisec formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa AT stanleywallnicolar formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa AT macpheecaite formationoffunctionalnonamyloidogenicfibresbyrecombinantbacillussubtilistasa |