Cargando…
Machine learning of optical properties of materials – predicting spectra from images and images from spectra
As the materials science community seeks to capitalize on recent advancements in computer science, the sparsity of well-labelled experimental data and limited throughput by which it can be generated have inhibited deployment of machine learning algorithms to date. Several successful examples in comp...
Autores principales: | Stein, Helge S., Guevarra, Dan, Newhouse, Paul F., Soedarmadji, Edwin, Gregoire, John M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334722/ https://www.ncbi.nlm.nih.gov/pubmed/30746072 http://dx.doi.org/10.1039/c8sc03077d |
Ejemplares similares
-
Synthesis, optical imaging, and absorption spectroscopy data for 179072 metal oxides
por: Stein, Helge S., et al.
Publicado: (2019) -
Machine learning molecular dynamics for the simulation of infrared spectra
por: Gastegger, Michael, et al.
Publicado: (2017) -
Machine learning of solvent effects on molecular spectra and reactions
por: Gastegger, Michael, et al.
Publicado: (2021) -
Benchmarking the acceleration of materials discovery by sequential learning
por: Rohr, Brian, et al.
Publicado: (2020) -
Electronic spectra of ions of astrochemical interest: from fast overview spectra to high resolution
por: Roithová, Jana, et al.
Publicado: (2018)