Cargando…
Cancer diagnosis through a tandem of classifiers for digitized histopathological slides
The current research study is concerned with the automated differentiation between histopathological slides from colon tissues with respect to four classes (healthy tissue and cancerous of grades 1, 2 or 3) through an optimized ensemble of predictors. Six distinct classifiers with prediction accurac...
Autores principales: | Lichtblau, Daniel, Stoean, Catalin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334911/ https://www.ncbi.nlm.nih.gov/pubmed/30650087 http://dx.doi.org/10.1371/journal.pone.0209274 |
Ejemplares similares
-
A hybrid unsupervised—Deep learning tandem for electrooculography time series analysis
por: Stoean, Ruxandra, et al.
Publicado: (2020) -
Validation of diagnostic accuracy using digital slides in routine histopathology
por: Fónyad, László, et al.
Publicado: (2012) -
Histopathology: ditch the slides, because digital and 3D are on show
por: Jansen, Ilaria, et al.
Publicado: (2018) -
Verification and Validation of Digital Pathology (Whole Slide Imaging) for Primary Histopathological Diagnosis: All Wales Experience
por: Babawale, M., et al.
Publicado: (2021) -
A correlation graph attention network for classifying chromosomal instabilities from histopathology whole-slide images
por: Liu, Liangliang, et al.
Publicado: (2023)