Cargando…
Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro
Phage therapy is drawing more interest as antibiotic resistance becomes an ever more serious threat to public health. Bacterial biofilms represent a major obstacle in the fight against bacterial infections as they are inherently refractory to many types of antibiotics. Treating biofilms with phage h...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334939/ https://www.ncbi.nlm.nih.gov/pubmed/30650088 http://dx.doi.org/10.1371/journal.pone.0209390 |
Sumario: | Phage therapy is drawing more interest as antibiotic resistance becomes an ever more serious threat to public health. Bacterial biofilms represent a major obstacle in the fight against bacterial infections as they are inherently refractory to many types of antibiotics. Treating biofilms with phage has shown promise in a handful of experimental and case studies. However, quantification of the effect of phage combined with antibiotics is needed to pave the way for larger clinical trials. Here we explore the effect of using phage in combination with a total of nine antibiotics, applied simultaneously or as a pretreatment before antibiotics are applied to in vitro biofilms of Staphylococcus aureus. Most antibiotics alone were ineffective at low concentration (2×MIC), but the addition of phage to treatment regimens led to substantial improvements in efficacy. At high concentration (10×MIC), antibiotics alone were effective, and in most cases the addition of phage to treatment regimens did not improve efficacy. Using phage with rifampin was also very effective at reducing the outgrowth of resistant strains during the course of treatment. |
---|