Cargando…

Continuous, quantifiable, and simple osmotic preconcentration and sensing within microfluidic devices

Insurmountable detection challenges will impede the development of many of the next-generation of lab-on-a-chip devices (e.g., point-of-care and real-time health monitors). Here we present the first membrane-based, microfluidic sample preconcentration method that is continuous, quantifiable, simple,...

Descripción completa

Detalles Bibliográficos
Autores principales: Jajack, Andrew, Stamper, Isaac, Gomez, Eliot, Brothers, Michael, Begtrup, Gavi, Heikenfeld, Jason
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334995/
https://www.ncbi.nlm.nih.gov/pubmed/30650158
http://dx.doi.org/10.1371/journal.pone.0210286
Descripción
Sumario:Insurmountable detection challenges will impede the development of many of the next-generation of lab-on-a-chip devices (e.g., point-of-care and real-time health monitors). Here we present the first membrane-based, microfluidic sample preconcentration method that is continuous, quantifiable, simple, and capable of working with any analyte. Forward osmosis rapidly concentrates analytes by removing water from a stream of sample fluid. 10-100X preconcentration is possible in mere minutes. This requires careful selection of the semi-permeable membrane and draw molecule; therefore, the osmosis performance of several classes of membranes and draw molecules were systematically optimized. Proof-of-concept preconcentration devices were characterized based on their concentration ability and fouling resistance. In-silico theoretical modeling predicts the experimental findings and provides an engineering toolkit for future designs. With this toolkit, inexpensive ready-for-manufacturing prototypes were also developed. These devices provide broad-spectrum detection improvements across many analytes and sensing modalities, enabling next-generation lab-on-a-chip devices.