Cargando…

High Fat Diet Increases Circulating Endocannabinoids Accompanied by Increased Synthesis Enzymes in Adipose Tissue

The endocannabinoid system (ECS) controls energy balance by regulating both energy intake and energy expenditure. Endocannabinoid levels are elevated in obesity suggesting a potential causal relationship. This study aimed to elucidate the rate of dysregulation of the ECS, and the metabolic organs in...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuipers, Eline N., Kantae, Vasudev, Maarse, Boukje C. Eveleens, van den Berg, Susan M., van Eenige, Robin, Nahon, Kimberly J., Reifel-Miller, Anne, Coskun, Tamer, de Winther, Menno P. J., Lutgens, Esther, Kooijman, Sander, Harms, Amy C., Hankemeier, Thomas, van der Stelt, Mario, Rensen, Patrick C. N., Boon, Mariëtte R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335353/
https://www.ncbi.nlm.nih.gov/pubmed/30687125
http://dx.doi.org/10.3389/fphys.2018.01913
Descripción
Sumario:The endocannabinoid system (ECS) controls energy balance by regulating both energy intake and energy expenditure. Endocannabinoid levels are elevated in obesity suggesting a potential causal relationship. This study aimed to elucidate the rate of dysregulation of the ECS, and the metabolic organs involved, in diet-induced obesity. Eight groups of age-matched male C57Bl/6J mice were randomized to receive a chow diet (control) or receive a high fat diet (HFD, 45% of calories derived from fat) ranging from 1 day up to 18 weeks before euthanasia. Plasma levels of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (N-arachidonoylethanolamine, AEA), and related N-acylethanolamines, were quantified by UPLC-MS/MS and gene expression of components of the ECS was determined in liver, muscle, white adipose tissue (WAT) and brown adipose tissue (BAT) during the course of diet-induced obesity development. HFD feeding gradually increased 2-AG (+132% within 4 weeks, P < 0.05), accompanied by upregulated expression of its synthesizing enzymes Daglα and β in WAT and BAT. HFD also rapidly increased AEA (+81% within 1 week, P < 0.01), accompanied by increased expression of its synthesizing enzyme Nape-pld, specifically in BAT. Interestingly, Nape-pld expression in BAT correlated with plasma AEA levels (R(2) = 0.171, β = 0.276, P < 0.001). We conclude that a HFD rapidly activates adipose tissue depots to increase the synthesis pathways of endocannabinoids that may aggravate the development of HFD-induced obesity.