Cargando…
EDTA etching: a simple way for regulating the traps, size and aqueous-dispersibility of Cr(3+)-doped zinc gallate
Traps, size and aqueous-dispersibility are the most important parameters that affect the features and applications of persistent luminescent nanoparticles (PLNPs). However, simultaneous controlling of these parameters is rather difficult and has not been reported yet. We present the first exploratio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335619/ https://www.ncbi.nlm.nih.gov/pubmed/30746117 http://dx.doi.org/10.1039/c8sc04173c |
_version_ | 1783387923069009920 |
---|---|
author | Wang, He-Fang Chen, Xi Feng, Fan Ji, Xia Zhang, Ye |
author_facet | Wang, He-Fang Chen, Xi Feng, Fan Ji, Xia Zhang, Ye |
author_sort | Wang, He-Fang |
collection | PubMed |
description | Traps, size and aqueous-dispersibility are the most important parameters that affect the features and applications of persistent luminescent nanoparticles (PLNPs). However, simultaneous controlling of these parameters is rather difficult and has not been reported yet. We present the first exploration on adjusting the traps, size and aqueous-dispersibility of PLNPs via simple ethylenediaminetetraacetate (EDTA) etching. Cr(0.004)(3+):ZnGa(2)O(4) (ZGO) was used as the PLNP model. EDTA etching of the sintered ZGO results in effective reduction of the size and great improvement in the aqueous-dispersibility. In addition, EDTA etching alters the density of mediate traps and generates new deep traps, thus achieving the massive production of (ultra)small ZGO–EDTA with fine aqueous-dispersibility, suitable mediate/deep traps and superlong bright afterglows (51 days). As EDTA can interact with most metals, this simple EDTA etching strategy is prospectively amenable to other PLNPs, and the resulting PLNPs–EDTA have wide applications in both biological field and information storage. |
format | Online Article Text |
id | pubmed-6335619 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-63356192019-02-11 EDTA etching: a simple way for regulating the traps, size and aqueous-dispersibility of Cr(3+)-doped zinc gallate Wang, He-Fang Chen, Xi Feng, Fan Ji, Xia Zhang, Ye Chem Sci Chemistry Traps, size and aqueous-dispersibility are the most important parameters that affect the features and applications of persistent luminescent nanoparticles (PLNPs). However, simultaneous controlling of these parameters is rather difficult and has not been reported yet. We present the first exploration on adjusting the traps, size and aqueous-dispersibility of PLNPs via simple ethylenediaminetetraacetate (EDTA) etching. Cr(0.004)(3+):ZnGa(2)O(4) (ZGO) was used as the PLNP model. EDTA etching of the sintered ZGO results in effective reduction of the size and great improvement in the aqueous-dispersibility. In addition, EDTA etching alters the density of mediate traps and generates new deep traps, thus achieving the massive production of (ultra)small ZGO–EDTA with fine aqueous-dispersibility, suitable mediate/deep traps and superlong bright afterglows (51 days). As EDTA can interact with most metals, this simple EDTA etching strategy is prospectively amenable to other PLNPs, and the resulting PLNPs–EDTA have wide applications in both biological field and information storage. Royal Society of Chemistry 2018-11-12 /pmc/articles/PMC6335619/ /pubmed/30746117 http://dx.doi.org/10.1039/c8sc04173c Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
spellingShingle | Chemistry Wang, He-Fang Chen, Xi Feng, Fan Ji, Xia Zhang, Ye EDTA etching: a simple way for regulating the traps, size and aqueous-dispersibility of Cr(3+)-doped zinc gallate |
title | EDTA etching: a simple way for regulating the traps, size and aqueous-dispersibility of Cr(3+)-doped zinc gallate
|
title_full | EDTA etching: a simple way for regulating the traps, size and aqueous-dispersibility of Cr(3+)-doped zinc gallate
|
title_fullStr | EDTA etching: a simple way for regulating the traps, size and aqueous-dispersibility of Cr(3+)-doped zinc gallate
|
title_full_unstemmed | EDTA etching: a simple way for regulating the traps, size and aqueous-dispersibility of Cr(3+)-doped zinc gallate
|
title_short | EDTA etching: a simple way for regulating the traps, size and aqueous-dispersibility of Cr(3+)-doped zinc gallate
|
title_sort | edta etching: a simple way for regulating the traps, size and aqueous-dispersibility of cr(3+)-doped zinc gallate |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335619/ https://www.ncbi.nlm.nih.gov/pubmed/30746117 http://dx.doi.org/10.1039/c8sc04173c |
work_keys_str_mv | AT wanghefang edtaetchingasimplewayforregulatingthetrapssizeandaqueousdispersibilityofcr3dopedzincgallate AT chenxi edtaetchingasimplewayforregulatingthetrapssizeandaqueousdispersibilityofcr3dopedzincgallate AT fengfan edtaetchingasimplewayforregulatingthetrapssizeandaqueousdispersibilityofcr3dopedzincgallate AT jixia edtaetchingasimplewayforregulatingthetrapssizeandaqueousdispersibilityofcr3dopedzincgallate AT zhangye edtaetchingasimplewayforregulatingthetrapssizeandaqueousdispersibilityofcr3dopedzincgallate |