Cargando…

A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds

Small organic materials are generally plagued by their high solubility in battery electrolytes. Finding approaches to suppress solubilization while not penalizing gravimetric capacity remains a challenge. Here we propose the concept of a hydrogen bond stabilized organic battery framework as a viable...

Descripción completa

Detalles Bibliográficos
Autores principales: Sieuw, Louis, Jouhara, Alia, Quarez, Éric, Auger, Chloé, Gohy, Jean-François, Poizot, Philippe, Vlad, Alexandru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335633/
https://www.ncbi.nlm.nih.gov/pubmed/30746090
http://dx.doi.org/10.1039/c8sc02995d
_version_ 1783387926142386176
author Sieuw, Louis
Jouhara, Alia
Quarez, Éric
Auger, Chloé
Gohy, Jean-François
Poizot, Philippe
Vlad, Alexandru
author_facet Sieuw, Louis
Jouhara, Alia
Quarez, Éric
Auger, Chloé
Gohy, Jean-François
Poizot, Philippe
Vlad, Alexandru
author_sort Sieuw, Louis
collection PubMed
description Small organic materials are generally plagued by their high solubility in battery electrolytes. Finding approaches to suppress solubilization while not penalizing gravimetric capacity remains a challenge. Here we propose the concept of a hydrogen bond stabilized organic battery framework as a viable solution. This is illustrated for 2,5-diamino-1,4-benzoquinone (DABQ), an electrically neutral and low mass organic chemical, yet with unusual thermal stability and low solubility in battery electrolytes. These properties are shown to arise from hydrogen bond molecular crystal stabilization, confirmed by a suite of techniques including X-ray diffraction and infrared spectroscopy. We also establish a quantitative correlation between the electrolyte solvent polarity, molecular structure of the electrolyte and DABQ solubility – then correlate these to the cycling stability. Notably, DABQ displays a highly reversible (above 99%) sequential 2-electron electrochemical activity in the solid phase, a process rarely observed for similar small molecular battery chemistries. Taken together, these results reveal a potential new strategy towards stable and practical organic battery chemistries through intramolecular hydrogen-bonding crystal stabilization.
format Online
Article
Text
id pubmed-6335633
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-63356332019-02-11 A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds Sieuw, Louis Jouhara, Alia Quarez, Éric Auger, Chloé Gohy, Jean-François Poizot, Philippe Vlad, Alexandru Chem Sci Chemistry Small organic materials are generally plagued by their high solubility in battery electrolytes. Finding approaches to suppress solubilization while not penalizing gravimetric capacity remains a challenge. Here we propose the concept of a hydrogen bond stabilized organic battery framework as a viable solution. This is illustrated for 2,5-diamino-1,4-benzoquinone (DABQ), an electrically neutral and low mass organic chemical, yet with unusual thermal stability and low solubility in battery electrolytes. These properties are shown to arise from hydrogen bond molecular crystal stabilization, confirmed by a suite of techniques including X-ray diffraction and infrared spectroscopy. We also establish a quantitative correlation between the electrolyte solvent polarity, molecular structure of the electrolyte and DABQ solubility – then correlate these to the cycling stability. Notably, DABQ displays a highly reversible (above 99%) sequential 2-electron electrochemical activity in the solid phase, a process rarely observed for similar small molecular battery chemistries. Taken together, these results reveal a potential new strategy towards stable and practical organic battery chemistries through intramolecular hydrogen-bonding crystal stabilization. Royal Society of Chemistry 2018-10-09 /pmc/articles/PMC6335633/ /pubmed/30746090 http://dx.doi.org/10.1039/c8sc02995d Text en This journal is © The Royal Society of Chemistry 2019 https://creativecommons.org/licenses/by-nc/3.0/This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0)
spellingShingle Chemistry
Sieuw, Louis
Jouhara, Alia
Quarez, Éric
Auger, Chloé
Gohy, Jean-François
Poizot, Philippe
Vlad, Alexandru
A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds
title A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds
title_full A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds
title_fullStr A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds
title_full_unstemmed A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds
title_short A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds
title_sort h-bond stabilized quinone electrode material for li–organic batteries: the strength of weak bonds
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335633/
https://www.ncbi.nlm.nih.gov/pubmed/30746090
http://dx.doi.org/10.1039/c8sc02995d
work_keys_str_mv AT sieuwlouis ahbondstabilizedquinoneelectrodematerialforliorganicbatteriesthestrengthofweakbonds
AT jouharaalia ahbondstabilizedquinoneelectrodematerialforliorganicbatteriesthestrengthofweakbonds
AT quarezeric ahbondstabilizedquinoneelectrodematerialforliorganicbatteriesthestrengthofweakbonds
AT augerchloe ahbondstabilizedquinoneelectrodematerialforliorganicbatteriesthestrengthofweakbonds
AT gohyjeanfrancois ahbondstabilizedquinoneelectrodematerialforliorganicbatteriesthestrengthofweakbonds
AT poizotphilippe ahbondstabilizedquinoneelectrodematerialforliorganicbatteriesthestrengthofweakbonds
AT vladalexandru ahbondstabilizedquinoneelectrodematerialforliorganicbatteriesthestrengthofweakbonds
AT sieuwlouis hbondstabilizedquinoneelectrodematerialforliorganicbatteriesthestrengthofweakbonds
AT jouharaalia hbondstabilizedquinoneelectrodematerialforliorganicbatteriesthestrengthofweakbonds
AT quarezeric hbondstabilizedquinoneelectrodematerialforliorganicbatteriesthestrengthofweakbonds
AT augerchloe hbondstabilizedquinoneelectrodematerialforliorganicbatteriesthestrengthofweakbonds
AT gohyjeanfrancois hbondstabilizedquinoneelectrodematerialforliorganicbatteriesthestrengthofweakbonds
AT poizotphilippe hbondstabilizedquinoneelectrodematerialforliorganicbatteriesthestrengthofweakbonds
AT vladalexandru hbondstabilizedquinoneelectrodematerialforliorganicbatteriesthestrengthofweakbonds