Cargando…
Feature Learning of Virus Genome Evolution With the Nucleotide Skip-Gram Neural Network
Recent studies reveal that even the smallest genomes such as viruses evolve through complex and stochastic processes, and the assumption of independent alleles is not valid in most applications. Advances in sequencing technologies produce multiple time-point whole-genome data, which enable potential...
Autor principal: | Shim, Hyunjin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335656/ https://www.ncbi.nlm.nih.gov/pubmed/30692845 http://dx.doi.org/10.1177/1176934318821072 |
Ejemplares similares
-
Genomic Prediction Using Canopy Coverage Image and Genotypic Information in Soybean via a Hybrid Model
por: Howard, Reka, et al.
Publicado: (2019) -
PresB-Net: parametric binarized neural network with learnable activations and shuffled grouped convolution
por: Shin, Jungwoo, et al.
Publicado: (2022) -
A storage-efficient ensemble classification using filter sharing on binarized convolutional neural networks
por: Kim, HyunJin, et al.
Publicado: (2022) -
Comparison of the performance of skip lists and splay trees in classification of internet packets
por: Khezrian, Navid, et al.
Publicado: (2019) -
Introspective analysis of convolutional neural networks for improving discrimination performance and feature visualisation
por: Shafiq, Shakeel, et al.
Publicado: (2021)