Cargando…
Model-based virtual patient analysis of human liver regeneration predicts critical perioperative factors controlling the dynamic mode of response to resection
BACKGROUND: Liver has the unique ability to regenerate following injury, with a wide range of variability of the regenerative response across individuals. Existing computational models of the liver regeneration are largely tuned based on rodent data and hence it is not clear how well these models ca...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335689/ https://www.ncbi.nlm.nih.gov/pubmed/30651095 http://dx.doi.org/10.1186/s12918-019-0678-y |
_version_ | 1783387938311110656 |
---|---|
author | Verma, Babita K. Subramaniam, Pushpavanam Vadigepalli, Rajanikanth |
author_facet | Verma, Babita K. Subramaniam, Pushpavanam Vadigepalli, Rajanikanth |
author_sort | Verma, Babita K. |
collection | PubMed |
description | BACKGROUND: Liver has the unique ability to regenerate following injury, with a wide range of variability of the regenerative response across individuals. Existing computational models of the liver regeneration are largely tuned based on rodent data and hence it is not clear how well these models capture the dynamics of human liver regeneration. Recent availability of human liver volumetry time series data has enabled new opportunities to tune the computational models for human-relevant time scales, and to predict factors that can significantly alter the dynamics of liver regeneration following a resection. METHODS: We utilized a mathematical model that integrates signaling mechanisms and cellular functional state transitions. We tuned the model parameters to match the time scale of human liver regeneration using an elastic net based regularization approach for identifying optimal parameter values. We initially examined the effect of each parameter individually on the response mode (normal, suppressed, failure) and extent of recovery to identify critical parameters. We employed phase plane analysis to compute the threshold of resection. We mapped the distribution of the response modes and threshold of resection in a virtual patient cohort generated in silico via simultaneous variations in two most critical parameters. RESULTS: Analysis of the responses to resection with individual parameter variations showed that the response mode and extent of recovery following resection were most sensitive to variations in two perioperative factors, metabolic load and cell death post partial hepatectomy. Phase plane analysis identified two steady states corresponding to recovery and failure, with a threshold of resection separating the two basins of attraction. The size of the basin of attraction for the recovery mode varied as a function of metabolic load and cell death sensitivity, leading to a change in the multiplicity of the system in response to changes in these two parameters. CONCLUSIONS: Our results suggest that the response mode and threshold of failure are critically dependent on the metabolic load and cell death sensitivity parameters that are likely to be patient-specific. Interventions that modulate these critical perioperative factors may be helpful to drive the liver regenerative response process towards a complete recovery mode. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12918-019-0678-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6335689 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-63356892019-01-23 Model-based virtual patient analysis of human liver regeneration predicts critical perioperative factors controlling the dynamic mode of response to resection Verma, Babita K. Subramaniam, Pushpavanam Vadigepalli, Rajanikanth BMC Syst Biol Research Article BACKGROUND: Liver has the unique ability to regenerate following injury, with a wide range of variability of the regenerative response across individuals. Existing computational models of the liver regeneration are largely tuned based on rodent data and hence it is not clear how well these models capture the dynamics of human liver regeneration. Recent availability of human liver volumetry time series data has enabled new opportunities to tune the computational models for human-relevant time scales, and to predict factors that can significantly alter the dynamics of liver regeneration following a resection. METHODS: We utilized a mathematical model that integrates signaling mechanisms and cellular functional state transitions. We tuned the model parameters to match the time scale of human liver regeneration using an elastic net based regularization approach for identifying optimal parameter values. We initially examined the effect of each parameter individually on the response mode (normal, suppressed, failure) and extent of recovery to identify critical parameters. We employed phase plane analysis to compute the threshold of resection. We mapped the distribution of the response modes and threshold of resection in a virtual patient cohort generated in silico via simultaneous variations in two most critical parameters. RESULTS: Analysis of the responses to resection with individual parameter variations showed that the response mode and extent of recovery following resection were most sensitive to variations in two perioperative factors, metabolic load and cell death post partial hepatectomy. Phase plane analysis identified two steady states corresponding to recovery and failure, with a threshold of resection separating the two basins of attraction. The size of the basin of attraction for the recovery mode varied as a function of metabolic load and cell death sensitivity, leading to a change in the multiplicity of the system in response to changes in these two parameters. CONCLUSIONS: Our results suggest that the response mode and threshold of failure are critically dependent on the metabolic load and cell death sensitivity parameters that are likely to be patient-specific. Interventions that modulate these critical perioperative factors may be helpful to drive the liver regenerative response process towards a complete recovery mode. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12918-019-0678-y) contains supplementary material, which is available to authorized users. BioMed Central 2019-01-16 /pmc/articles/PMC6335689/ /pubmed/30651095 http://dx.doi.org/10.1186/s12918-019-0678-y Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Verma, Babita K. Subramaniam, Pushpavanam Vadigepalli, Rajanikanth Model-based virtual patient analysis of human liver regeneration predicts critical perioperative factors controlling the dynamic mode of response to resection |
title | Model-based virtual patient analysis of human liver regeneration predicts critical perioperative factors controlling the dynamic mode of response to resection |
title_full | Model-based virtual patient analysis of human liver regeneration predicts critical perioperative factors controlling the dynamic mode of response to resection |
title_fullStr | Model-based virtual patient analysis of human liver regeneration predicts critical perioperative factors controlling the dynamic mode of response to resection |
title_full_unstemmed | Model-based virtual patient analysis of human liver regeneration predicts critical perioperative factors controlling the dynamic mode of response to resection |
title_short | Model-based virtual patient analysis of human liver regeneration predicts critical perioperative factors controlling the dynamic mode of response to resection |
title_sort | model-based virtual patient analysis of human liver regeneration predicts critical perioperative factors controlling the dynamic mode of response to resection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335689/ https://www.ncbi.nlm.nih.gov/pubmed/30651095 http://dx.doi.org/10.1186/s12918-019-0678-y |
work_keys_str_mv | AT vermababitak modelbasedvirtualpatientanalysisofhumanliverregenerationpredictscriticalperioperativefactorscontrollingthedynamicmodeofresponsetoresection AT subramaniampushpavanam modelbasedvirtualpatientanalysisofhumanliverregenerationpredictscriticalperioperativefactorscontrollingthedynamicmodeofresponsetoresection AT vadigepallirajanikanth modelbasedvirtualpatientanalysisofhumanliverregenerationpredictscriticalperioperativefactorscontrollingthedynamicmodeofresponsetoresection |